
AIAA 2019-2020 Graduate Team Missile Systems Design Competition 
 

 

Design Proposed By: 
Aerospace Systems Design Laboratory 

Georgia Institute of Technology, Atlanta, Georgia



ASDL 2020 – Team Members  

 

2 

 

 

   

Dr. Dimitri Mavris 
Faculty Advisor 

Dr. Bradford Robertson 
Research Advisor 

Mr. Andrew Yatsko 
Research Advisor 

Air-Breathing Propulsion 

   
 

    

Sarah Malak 
Propulsion 

ASDL 

Zach Parham 
Propulsion 

Undergraduate 

Andrej Šulek 
Propulsion 

Undergraduate 

Nate Simon 
Trajectory 

ASDL 
AIAA # 1098269 AIAA # 775584 AIAA # 1098306 AIAA # 952743 

  

  

    

Rosa Bonilla 
Structures 
Graduate 

Nikolay Tranakiev 
Structures 

Undergraduate 

Scott Nealon 
Aerodynamics 

ASDL 

Jessica Grimmett 
Aerodynamics 
Undergraduate 

AIAA # 1070303 AIAA # 1098445 AIAA # 643141 AIAA # 1098445 

    



ASDL 2020 – Nomenclature  

 

3 

 

Design for a Supersonic Aerial Target 

Sarah Malak1,  Nathan Simon1, Scott Nealon1, Rosa Bonilla2, 
Jessica Grimmet3, Zachary Parham3, Andrej Šulek3, Nikolay Tranakiev3 

Aerospace Systems Design Laboratory, Georgia Institute of Technology, Atlanta, GA, 30332, USA 
 

 

The purpose of this report is to outline the design of a supersonic aerial target, capable of 

both a high diver and sea skimming profile, in response to the American Institute of 

Aeronautics and Astronautics (AIAA) 2019-2020 Graduate Team Missile Systems Design 

Competition Request for Proposal. 

 

I. Nomenclature 

Ac = stage cross sectional area 
a = speed of sound 
CD = coefficient of drag 
CL = coefficient of lift 
Cmα = pitching moment coefficient 
g = gravitational acceleration 
Hf = heating value 
ISP = specific impulse 
M = Mach number 
m = mass 
Pc = chamber pressure 
R = body radius 
S = reference area 
 
 
 
 
 
 
 
 
 

                                                           

1 Graduate Research Assistant, Aerospace Systems Design Laboratory (Georgia Tech), AIAA Student Member 
2 Graduate Student, Georgia Tech, AIAA Student Member 
3 Undergraduate Student, Georgia Tech, AIAA Student Member 

Tc = combustion temperature ratio 
T = thrust 
t = frame thickness 
V = velocity 
W = weight 
α = angle of attack 
γ = specific heat ratio 
γflight = flight path angle 
δ = turning angle 
ρ = air density 
σ = stress 
θshock = shock angle 
θpitch = pitch angle 
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V. Executive Summary 

Table 1 lists the requirements laid out in the Request for Proposal (RFP) [1], how the ASDL-1776 PROMISE 

missile performs with respect to each metric, and in which section of the report the analysis of the missile’s 

performance for each metric can be found. 

Table 1. Executive summary. 

Requirement Threshold / Objective Design Value / Method Analysis Location 

Range 60 / 150 nmi 

High Diver: 
182+ nmi 

Sea Skimming: 
152 nmi 

High Diver: 
Section X.C.1 
Sea Skimming: 
Section X.C.2 

Cruise Speed 

High Diver:  
Mach 2.0 – 4.5 
Sea Skimming: 
Mach 2.0 – 3.5 

High Diver:  
Mach 3.25 

Sea Skimming: 
Mach 2.75 

High Diver: 
Section X.C.1 
Sea Skimming: 
Section X.C.2 

Cruise Altitude 

High Diver:  
5000 ft – 65000 ft 

Sea Skimming: 
15 ft – 200 ft 

High Diver:  
50,000 ft 

Sea Skimming: 
195 ft 

High Diver: 
Section X.C.1 
Sea Skimming: 
Section X.C.2 

Impact Speed 

High Diver: 
Mach 0.9 – 3.5 
Sea Skimming: 
Mach 2.0 – 3.5 

High Diver:  
Mach 2.99 

Sea Skimming: 
Mach 2.6 

High Diver: 
Section X.C.1 
Sea Skimming: 
Section X.C.2 

Circular Error 
Probable (CEP) 50 ft 29.5 ft horizontal, 

49.2 ft vertical Section VIII.F.6  

Sea Skimming 
Maneuvers 

15 g Lateral Turns 
7 g Vertical Turns 

Maneuver Duration 45 s 

Capable of withstanding 
> 15 g Section X.B.2 

Launch Altitude: 0 ft – 3500 ft 
Elevation: 0° - 90° 

Capability: 0 ft – 3500 ft 
High Diver: 45o 

Sea Skimming: 12.5o 
Section X.C.3 

VI. Introduction 

A. Project Introduction 

The report details the final design of the Georgia Institute of Technology’s Missile Design team entry to the 2019-

2020 AIAA Graduate Team Missile Systems Design Competition. The team consists of first year graduate students 

and undergraduate students attending the Georgia Institute of Technology. Every year, the AIAA Graduate Team 
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Missile Systems Design Competition sponsors an intercollegiate competition with a new missile RFP. This year, the 

RFP calls for a new supersonic aerial target that will be able to develop new air defenses or train defense system 

operators against possible threats [1]. This system will have to have performance characteristics that are closely 

representative of the current threat systems that air defenses are designed to engage. The remainder of the report will 

provide a detailed description of the design process, the down-selection process, and the final design for the Protective 

Range-Optimized Missile Imitating Supersonic Entities, also known as ASDL-1776 PROMISE. 

B. Motivation and Existing Systems 

 The world market for supersonic cruise missiles is growing, with the Indian-Russian BrahMos leading the 

competition, and the Chinese Hongda HD-1 currently in development and set to be a close competitor. BrahMos 

Aerospace is a joint venture between the Defense Research and Development Organization of India and the Military 

Industrial Consortium “NPO Mashinostroyenia” of Russia. Based on the company’s website, current capabilities of 

BrahMos include cruise speeds around Mach 3, a flight range of around 150 nmi (though future versions are expected 

to exceed this), and cruise altitudes ranging from 30 ft to 50,000 ft [2]. These statistics easily exceed the capabilities 

of all other cruise missiles that are currently on the market. The Chinese Hongda HD-1 is a system that is supposed to 

be in direct competition with BrahMos, with cruise speeds of up to Mach 3.5 [3].  Based on open-source information, 

the Hongda HD-1 has completed its first flight test, but there is no information currently available regarding the 

outcome of this flight test, or further details about the design itself. In December of 2019, BrahMos successfully 

completed a ground launch from a land-based mobile launcher and an air-launched flight test from a Sukhoi-30 MKI 

fighter jet [4]

There are some existing target missiles currently in use, serving as surrogates of hostile threats to train air defense 

systems. One example is the AQM-37 Jayhawk, which first flew in 1961. The AQM-37 Jayhawk is incapable of the 

sea-skimming profile, presenting a need for the PROMISE missile in order to achieve all necessary mission profiles. 

Additionally, there is limited production of the AQM-37, which has led to a dwindling supply [5][6]. Another target 

missile is the GQM-173 Multi-Stage Supersonic Target that was designed to emulate Russia’s SS-N-27 “Sizzler,” and 

replace the aging fleet of AQM-37 [7]. The GQM-173 only modeled the supersonic sprint phase and cruises at 

subsonic speeds. This program was canceled in 2015, creating another opening for a new target system [8]. A third 

existing missile system that has the closest mission profile to the RFP for this design is the GQM-163A Coyote. This 
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target missile was designed to emulate Russia’s P-800 Oinks, the predecessor to the BrahMos missile [9]. The GQM-

163A Coyote is capable of both sea skimming and high diver profiles, however, it has a shorter range than comparable 

threats [10]. 

From a defense standpoint, the current U.S. missiles being used to train defense systems are highly inferior to the 

current weapons in operation. Whether defense systems continue to use intercept missiles, artillery guns, or if they 

transition towards directed energy systems, it is important to be able to train operators against a target that closest 

resembles the greatest threat. With BrahMos posing as a threat capable of operating from the ground, air, and sea, the 

BrahMos missile, along with the RFP requirements, will be used to create a basis for performance comparison during 

the development of the ASDL-1776 PROMISE, the next supersonic aerial target system. 

VII. Requirements 

A. Concept of Operations 

Though ASDL-1776 will have two distinct concepts of operations for each mission profile, they will follow the 

same general phases of operation, including launch initiation, launch, mid-course cruise, terminal phase, and terminal 

impact. Prior to launch initiation, the missile will require a transport and erector system for integration and checkout 

operations. The erector will be a device capable of taking the missile from a horizontal to vertical position, and vice 

versa. The transporter will be a vehicle with the ability to house and transport the erector and the missile in its 

horizontal configuration. Once transport is complete, ASDL-1776 will remain in its horizontal configuration for 

storage. The missile and its solid propellant will be stored in a controlled facility to ensure compatibility with safe 

storage, transportation, and handling requirements for 10 years without maintenance, as specified by the RFP [1]. 

Liquid fuel will be stored separately and added prior to launch. 

The launch initiation will be triggered by an order sent to a command post. The transporter and erector system will 

properly position the missile onto a launch rail. Due to the use of a solid rocket booster, the thrust at launch will be 

sufficient for ASDL-1776 to take flight without assistance from the launch rail. Thus, the length of the launch rail will 

be 29.5 ft, or roughly equal to the length of the missile itself. The launch rail will be mounted at 45° for the high-

altitude profile or 12.5° for the sea skimming profile. The crew members at the command post will initiate launch, 

load liquid fuel, and configure the Guidance, Navigation, and Control System to either the high-altitude profile or the 
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sea skimming profile. ASDL-1776 accepts a modular payload, allowing for an alternate payload to be loaded during 

pre-launch as necessary. The missile will be stored with the standard 500 lbs. full payload. 

The launch phase will commence once the booster is ignited and missile ascent begins. Once booster burnout is 

complete, the missile will eject the booster and transition to the mid-course cruise phase, where the system will remain 

until it reaches the terminal phase. For the low-altitude profile, the terminal phase will consist of high-g maneuvers. 

These maneuvers will be initiated by the command post and will continue for up to 45 seconds, followed by terminal 

impact. In the high-altitude profile, the terminal phase is marked by a high-speed dive, followed by terminal impact. 

B. Explicit Requirements 

Within the RFP, the AIAA set a list of explicit requirements for this year’s missile design, including requirements 

for both high diver and sea skimming flight profiles, as well as launch system and life cycle management requirements. 

The range objective is 150 nmi, with a required range threshold of 60 nmi. The missile should have a cruise altitude 

between 0 ft and 65,000 ft, with the objective of minimizing the launch-to-cruise transition distance. The circular error 

probable (CEP) must be within 50 ft. For the high diver flight profile, the missile must cruise between 5,000 ft and 

65,000 ft, have a cruise speed between Mach 2.0 and Mach 4.5, and terminate with an impact speed of Mach 0.9 to 

Mach 3.5. For the sea skimming flight profile, the missile must have a cruise altitude between 15 ft and 200 ft, a cruise 

speed between Mach 2.0 and Mach 3.5, and terminate with an impact speed of Mach 2.0 to Mach 3.5. The sea 

skimming profile also requires 15 g lateral turn maneuvers and 7 g vertical turn maneuvers with a duration of 45 

seconds. The missile payload has a maximum weight of 500 lbs., and there is an additional production requirement of 

350 units with 15 development units. Table 2 outlines the explicit requirements contained in the RFP [1]. 
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Table 2. Explicit requirements. 

Requirement Threshold Objective 

Range 60 nmi 150 nmi 

 Minimum Maximum 

Cruise Altitude 0 ft 65,000 ft 

Cruise Speed Mach 2.0 High-Diver: Mach 4.5 
Sea Skimming: Mach 3.5 

Impact Speed High-Diver: Mach 0.9 
Sea Skimming: Mach 2.0 Mach 3.5 

Maneuvers Lateral: 15 g 
Vertical: 7 g 

CEP 50 ft 

Payload Weight Up to 500 lbs. 

Production Run 350 Units + 15 Development Units 

C. Derived Requirements 

After analyzing the requirements defined in the RFP, there were several derived requirements that had to be 

considered during the design process. The following sections provide an explanation of how each of the derived 

requirements were extracted and why they were important to the design of the missile. 

1. Propulsive Efficiency 

The RFP dictates a threshold and objective range for the missile [1]. In order to accomplish these requirements, 

the missile must maximize propulsive efficiency, allowing it to meet or surpass both threshold and objective range 

requirements, as well as meet cruise requirements. 

2. Lift, Vectored Thrust Production 

In addition to specified range, the RFP also specifies cruise altitudes and speeds for both flight profiles and presents 

the objective of minimizing the launch-to-cruise transition distance [1]. These requirements imply that the missile 

must have the capability to produce enough lift and vectored thrust to achieve the specified values. 

3. Propulsion Considerations for Cruise 

From the given requirements for range and cruise, the missile will need a propulsion system that is capable of 

extended cruise segments. Thus, an air-breathing propulsion and a throttled solid rocket motor were analyzed as 

possible propulsion systems for the missile. Furthermore, the propulsion system must be analyzed to ensure its 

efficiency in the Mach ranges provided by the RFP [1]. 
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4. Guidance, Navigation, and Control System 

The RFP provides a trajectory following requirement and accuracy requirement (CEP). Each of these indicate that 

the missile will need to be equipped with an accurate guidance, navigation, and control system within the parameters 

specified. Additionally, the RFP provides altitude and speed ranges for both mission profiles. Since there are two 

profiles with distinct performance requirements and specified cruise altitudes, the missile will require a navigation 

system capable of executing predefined mission profiles. Lastly, the missile must be equipped with control authority 

in order to command high-g maneuvers, specified by the RFP, when necessary [1]. 

5. Structure Capable of Withstanding Loads 

For the sea skimming mission profile, the RFP provides requirements for high-g maneuvers, including load factors 

and duration [1]. To ensure the missile can complete these maneuvers, its structure must be capable of withstanding 

the specified loads for the specified duration. This will be analyzed in the structural analysis, to determine the optimal 

structure material and thickness. A summary of the derived requirements is shown below in Table 3 [1]. 

Table 3. Derived requirements. 

Requirement Derived Requirements 

Range 
Threshold: 60 nmi, Objective: 150 nmi Maximize propulsive efficiency 

Produce enough lift/vectored thrust 
Propulsion system capable of extended cruise (air-breathing) Cruise Altitude 

Maximum: 65,000 ft, Minimum: sea skimming 

Launch-to-Cruise Transition 
Minimize transition distance 

Propulsion system that can quickly get missile to cruise speeds 
(booster) 

Trajectory Following 
< 1500 ft of programmed 

Accurate guidance, navigation, and control system 
CEP 
50 ft 

High Diver Profile 
Altitude: 5000 – 6500 ft, Speed: Mach 2.0 – 4.5 Navigation system capable of executing predefined mission 

profiles 
Air-breathing propulsion system efficient in these Mach ranges Sea Skimming Profile 

Altitude: 15 – 200 ft, Speed: Mach 2.0 – 3.5 

Maneuvers 
Lateral Turns: 15 g, Vertical Turns: 7 g 
Duration: 45 s 

Structure capable of withstanding necessary load factors 
Control authority to command high-g maneuvers 
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VIII. Approach 

The following sections details the technical approach taken to develop the missile design environment. This 

includes the motivations behind the choice to use a design of experiments (DOE) to select the optimal missile design 

as well as the disciplinary analyses included in the missile analysis environment.  

A. Motivation 

Identifying an optimal missile design requires a synthesis of a series of sub-disciplinary analyses, such as 

aerodynamics, propulsion, and trajectory. However, traditional multidisciplinary optimization frameworks used for 

engineering problems are often ill-suited for missile design. Small changes in the design of the missile can have large, 

unpredictable effects on the overall missile performance, mostly caused by the trajectory analysis which contains an 

optimal control problem. Placing the trajectory analysis within a traditional optimization framework results in nested 

optimization loops which can cause traditional multidisciplinary optimization techniques, often relying on gradient-

based optimization, to fail. Because of this, the process of identifying an optimal missile design cannot include an 

optimization loop. 

To avoid a nested optimization loop, the optimal missile design was selected though a series of design space 

samplings. A selection of potential missile designs was identified using a DOE, which was used to maximize the 

amount of information gained by each experiment while sampling the design space. The potential missile designs 

were run though the missile design environment, which determined the performance of the missile design. The results 

of all the missile designs were aggregated to select a final missile design. A full explanation of the steps taken during 

the design space exploration and its results are discussed in Section IX: Design of Experiments. 

The missile design environment encompasses the full analysis of a singular missile design. The missile design 

environment is composed of seven disciplines: geometry, propulsion, weights and structures, aerodynamics, 

trajectory, reliability, and life cycle analysis. An N2 diagram showing the flow of information between disciplines is 

shown below in Fig. 1. As discussed previously in Section VIII.A: Motivation, the missile design environment does 

not feature any feedback optimization between disciplines.  
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Fig. 1. Missile design environment N2 diagram. 

The inputs to the missile design environment are the features of a single missile design. Each individual 

disciplinary analysis determines both the performance of the design as well as its feasibility with respect to the given 

discipline. Because of the exploratory nature of a design of experiments and the way the missile was parameterized, 

the design of a missile may be considered infeasible for several reasons, which will be further discussed in the 

following sections. The result of the missile design environment is the cumulative performance of the missile from all 

the disciplines as well as the feasibility of the design. The entire design is considered infeasible if any individual 

discipline determines that the design is infeasible. 

B. Geometry 

Geometry serves as the starting point for the missile design environment. The geometry of the missile follows 

conventional cruise missile design guidelines. The external geometry of the missile is modeled as the buildup of six 

main components: nose, main body, inlets, wing, tail, and solid booster. The geometry takes in the variables from the 

DOE and converts them into the necessary geometric properties for the other disciplines in the missile design 

environment. The missile design environment can model a wide range of missile shapes. Several sample missile 

configurations are shown below in Fig. 2. 

Geometry 

Propulsion 

Weights & 
Structures 

Aerodynamics 

Trajectory 
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Fig. 2. Sample geometric missile layouts. 

1. External Geometry 

The overall length of the missile from the nose to the nozzle of the ramjet, not including any length added by a 

booster configuration, is defined by the missile length. The length of the missile is the largest driving factor of its 

overall size and performance. Large changes in the length of the missile have substantial impact on what would be 

considered an appropriate value or range for a several other parameters, such as the diameter of the missile or the 

location of the wing relative to the nose. As such, multiple parameters can be sized as ratios relative to the overall 

length of the missile. For example, instead of running over a range of missile diameters, the DOE can run over a range 

of missile fineness ratios, which is the ratio between the length of the missile and the missile diameter. This ensures 

the geometric feature is always an appropriate value for the given missile length so long as the ranges of possible 

ratios are appropriate. The size and shape of the nose are defined by the nose fineness ratio and the nose geometric 

shape.  

The number of inlets, wing panels, and tail panels are together defined by a single parameter, the inlet-tail-wing 

configuration, in order to ensure rotational symmetry. The wings and tails are located on top of the inlets to maximize 
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available control moment. As the wing panels and tail panels are located on top of the inlets, the number of wing 

panels or tail panels must be factors of the number of inlets. This limits the number of compatible combinations, 

creating the necessity for a single parameter to define them all. 

The wing and the tail geometries are defined by similar sets of parameters. The size and location of the wings and 

tails are defined by the total panel area and the trailing edge locations. The total wing or tail panel area is the sum of 

the areas of all the wing or tail panels, so a missile configuration with three wing panels will have larger individual 

panels than a missile configuration with four wing panels with the same total wing area. The wing or tail trailing edge 

location ratio is the location of the trailing edge of the wing or tail relative to the total missile length. The location of 

the wing or tail are defined by the trailing edge location to ensure the trailing edge of the tail does not hang over the 

end of the missile.  The shape of the wings and tails are defined by the panel aspect ratio, the taper ratio, the trailing 

edge sweep, and the airfoil shape. Trailing edge sweep was selected instead of the more conventional leading-edge 

sweep due to the observation that supersonic missiles tended to have a wide range of leading-edge sweeps but a smaller 

range of trailing edge sweeps. 

The inlets are modeled as 2D ramp inlets located axisymmetrically around the body. The size of the inlet is defined 

by the total inlet area, the inlet aspect ratio, and the inlet length ratio. The total inlet area is the sum of the frontal area 

of all the inlets. The inlet aspect ratio is the ratio between the height of an individual inlet and the width of an individual 

inlet. The inlet length ratio is the position of the start of the inlet as a ratio of the total missile length. From this point, 

the inlet goes down the length of the missile, all the way to the end of the missile before the solid booster. Additional 

shape parameters for the inlets include the angle of the inlet ramp and the height and length ratio of the diverter. Nose 

inlets were considered as valid configurations, but were incompatible with Missile Datcom, the code used for 

aerodynamic analysis. 

The external shape of the solid booster is defined by its length, diameter, and position. Both the length and diameter 

of the solid booster are defined as ratios of the total missile length and the missile diameter, respectively. Additionally, 

the location of the booster depends on whether it is an aft drop-off booster or an integral rocket-ramjet. An integral 

rocket-ramjet must be able to fit within the ramjet of the missile, restricting the possible ranges of stage lengths and 

diameters. A full explanation on the selection of booster configuration and other internal booster geometry parameters 

is discussed in Section VIII.C.2: Boost Phase.  
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While the missile environment can simulate a wide range of geometric configurations, the exploratory nature of 

the DOE requires a limit on the number of parameters being varied to obtain reliable results, therefore, several 

geometric parameters had to be set to default values. These default values were obtained through researching similar 

performing supersonic missiles. The defaulted geometric parameters are shown below in Table 4. 

Table 4. Defaulted geometric parameters. 

Parameter Default 

Missile Ellipticity 1 

Nose Shape Ogive 

Wing / Tail Aspect Ratio 1 

Wing / Tail Taper Ratio 0.3 

Wing / Tail Trailing Edge Sweep 0° 

Wing / Tail Airfoil Shape Hex 

Inlet Location Ratio 40% 

Inlet Aspect Ratio 1 

Inlet Ramp Angle 20° 

Diverter Height 0.02 ft 

Diverter Length Ratio 2% 
 

2. Internal Geometry 

The internal packing of the missile was determined through a volume-based analysis. This was completed by 

comparing the sum of component volumes to the overall internal volume of the missile without the booster, based on 

its diameter and length. The volume of the nose is reserved for a warhead simulant ballast. Located behind the nose 

and the warhead simulant is the missile avionics bay, which is approximated to have a length of 3 ft based on a survey 

of similar systems. Following the avionics bay is the payload bay, which has a required length of at least 3.5 ft 

according to the RFP [1]. The rear of the missile will house the ramjet engine. There were no physical ramjet sizing 

tools available, so a length of 6 ft was selected based on a survey of similar systems. The remaining volume of the 

missile was allocated to the liquid fuel tank, which is located between the payload bay and the ramjet. A visualization 

of the internal packing of a sample missile design is shown below in Fig. 3. 
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Fig. 3. Sample internal packing of missile. 

Because of the flexible nature of the input space to geometry, some inputs will result in an infeasible design. For 

example, the use of missile length and missile fineness ratio to define the missile diameter can result in a missile 

design that does not meet the RFP’s minimum payload diameter of 10 in [1]. Additionally, if the total available volume 

for the liquid fuel tank is negative, which occurs when the length of the missile minus the length of the nose is less 

than 12.5 ft, the missile is also considered infeasible.  

C. Propulsion 

To begin the propulsion analysis, various types of propulsion systems were considered. This section will cover the 

process of narrowing down the propulsion systems to the liquid ramjet with a solid rocket motor booster. It will also 

describe how the two systems will be modeled as well as what considerations and theory were needed.  

1. Air-Breathing Propulsion 

Because the RFP requires a cruise segment for each of the flight profiles, an exploration of various types of air-

breathing propulsion was performed. A turbofan and scramjet engine were immediately eliminated from the possible 

propulsion systems due to the flight profile speed requirements of Mach 2.0 to Mach 3.5/Mach 4.5. Thus, the analysis 

mainly focused on exploring the use of a ramjet versus a ducted rocket since both of these systems are efficient within 

these Mach ranges [11].  

A ducted rocket, essentially a hybrid of a rocket and a ramjet, was initially considered due to having a higher thrust 

than ramjets and a higher specific impulse than solid propellant rockets [11]. However, the ducts themselves can be 

complicated and its Technology Readiness Level (TRL) was not high enough to consider it as a viable propulsion 
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system for an aerial target, as both of these factors translate to an increase in overall cost. Since there are no missiles 

that currently use ducted rockets, choosing this system was not a justifiable choice. 

Besides being one of the least complicated propulsion systems as far as moving parts, ramjets are used on many 

missiles today. Its high TRL level, efficiency within the Mach ranges specified by the RFP, and ability to be throttled 

for cruise made the ramjet the optimal air-breathing propulsion choice for the ASDL-1776 [11]. 

Both solid and liquid fuels were considered for the ramjet, but solid propellant was ultimately discarded due to 

safety reasons. Using liquid fuel allows the engine to easily be throttled, stopped, and restarted. A liquid-fueled ramjet 

can be tested before operation, and most liquid propellants have nontoxic exhaust. The use of liquid fuel also allows 

the rocket to be fueled up before launch, meaning it is not as susceptible to accidentally exploding if dropped or hit 

compared to a rocket stored with solid fuel [12].  

Numerical Propulsion System Simulation (NPSS) version 1.6.5 was initially used to model the ramjet. The NPSS 

block diagram, shown in Fig. 4, included elements AmbientNASA, InletStart, Inlet, DuctNASA, Burner, FuelStart, 

Nozzle, FlowEnd, and EngPerf. A simple solver was also used to calculate the temperature after the burner based on 

inlet air flow rate.  

 

Fig. 4. NPSS ramjet block diagram. 

The NPSS model was to run the ramjet through altitudes ranging from 0 ft to 65,000 ft and Mach numbers from 

2.0 to 4.5. It would take in the inlet area from geometry and keep that as a constant, solving for the air mass flow rate 

and fuel mass flow rate. Each variation in inlet area would come from the DOE, representing a different vehicle.  

The limiting factor on a turbojet or turboprop is the temperature before the turbine, due to the turbine materials. 

On a ramjet, this temperature limitation is not present. The limiting factor for ramjets comes from the inlet, specifically 

the pressure loss across the shock waves. A ramjet engine relies on slowing down the air flow to subsonic speeds 

before the burner, using a normal shock to accomplish this task. However, the pressure losses across a normal shock 

are great, thus, in order to minimize these losses, many ramjet inlets are designed to create multiple oblique shocks 
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before the terminal normal shock, increasing the pressure recovery and the range of Mach numbers for which the 

ramjet can function efficiently [13].  

In order to properly model the ramjet inlet pressure recovery within NPSS, both Mil. Specs and shock tables were 

used and compared. The shock waves were accounted for using the equations shown below  in Eq. (1), (2), and (3) 

[14], where 𝛾𝛾 is the specific heat ratio and 𝛼𝛼 specifies whether the shock is a strong or weak shock solution. 𝜆𝜆 and 𝑋𝑋 

are placeholder variables. The shock angle, 𝜃𝜃𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜, was calculated based on the Mach number ahead of the shock, 𝑀𝑀1, 

and the turning angle, 𝛿𝛿. The weak shock solution was selected to minimize pressure losses when slowing down the 

flow. This allows for multiple oblique shocks followed by a single normal shock. 

tan(𝜃𝜃𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑘𝑘) =  
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The Mil. Spec used for the NPSS model was MIL-E-5007D. It was found that the calculations based on shock 

tables, which included multiple oblique shocks followed by a normal shock, gave a lower estimate of overall pressure 

recovery than the Mil. Spec. Also, the Mil. Spec did not account for the temperature variation across the shocks. NPSS 

automatically calculates a temperature rise between the ambient element and the burner, but this rise was found to be 

greater than what was calculated using the shock tables. It was decided to use the shock tables instead of the Mil. 

Spec, since this would give more accurate results with respect to both the pressure and temperature variations across 

the inlet.  

The NPSS model was to run the ramjet through altitudes ranging from 0 ft to 65,000 ft and Mach numbers from 

2.0 to 4.5. It would take in the inlet area from geometry and keep that as a constant, solving for the air mass flow rate 

and fuel mass flow rate. Each variation in inlet area would come from the DOE, representing a different vehicle. After 

building the model, it was found that the inlet area would continually change with respect to the inlet air mass flow 

rate, making use of the DOE variables meaningless. Also, the output for the code gave fuel mass flow rates and 



ASDL 2020 – Approach  

 

26 

 

calculated inlet areas that were physically impossible. It is believed that the difficulty of changing a variable designated 

as an output in NPSS to an input, paired with the need for a compressor and turbine element in most NPSS calculations, 

led to these inconsistencies. Because the difficulties encountered with using NPSS could not be rectified in a timely 

manner, it was decided that the specific impulse of the ramjet would be used instead, based upon information given 

from Fleeman, shown in Fig. 5 [11]. 

Specific impulse (ISP) of the ramjet was estimated using Equation (4), where 𝑀𝑀0 is the Mach number, 𝐻𝐻𝑓𝑓 is the 

heating value of fuel, 𝑇𝑇 is the combustion temperature ratio, 𝑎𝑎0 is the speed of sound, and 𝛾𝛾 is the specific heat ratio. 

The estimation was based off an ideal ramjet baseline with a combustion temperature optimized for Mach 3.5 and 

finds ISP as a function of current Mach number. Equation  was derived by creating a polynomial fit for the ISP of a 

known ramjet baseline, shown in Fig. 5 [11]. 
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Fig. 5. Specific impulse modeling of ramjet. 

The ISP model assumes isentropic flow, perfect gas, and ideal expansion. It also assumes a combustor with 

sufficient length to allow for complete combustion, which is a reasonable assumption for altitudes below 60,000 ft. 

Due to these assumptions, the estimated ISP is likely to be slightly higher than reality. 
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2. Boost Phase 

Because a ramjet was selected for optimum missile performance, a means of achieving the necessary speed for 

optimum ramjet performance was necessary. A ramjet engine starts being efficient at around Mach 2.0 [11]. A booster 

stage is necessary to achieve this speed for the ram effect to generate enough compression for optimum engine 

efficiency. 

There is no commercially available solid rocket motor code that would be able to size the booster stage. To properly 

model the boost stage of the ASDL-1776 missile, an algorithm had to be developed to determine the necessary outputs 

which include Mach No., mass flow rate, mass flux rate, chamber pressure, optimum grain geometry, and propellent 

mass. The current code developed by Casey Wilson [15] had some of the necessary capabilities but needed to be re-

written and modified to handle the DOE and the most effective solid rocket motor (SRM) grain and geometry design. 

The grain varying capabilities of the code were imperative so that the DOE would select the lowest cost and most 

effective solid rocket motor. What follows is a description of the grain geometry capabilities of the code as well as an 

explanation on how the burn simulation operates. 

The code itself can be broken down to two main modules. The first module generates the geometric output of an 

arbitrary geometry using an internal and external edge finding algorithm. The second module inputs the geometric 

output and simulates the burn of the solid rocket motor via an unsteady model. Fig. 6 shows a visualization of the 

geometric burn algorithm. The blue line represents the original propellant core boundary while the red circles represent 

the growing circular boundary of propellant consumption at a given time step [15]. 

 

Fig. 6. Visualization of geometric burn algorithm. 
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Grain geometry variation is a key input factor that influences the solid rocket motors performance and was a factor 

that varied in the final DOE. The grain capabilities were expanded to include four unique geometries, shown in Fig. 7 

[15].  

 

Fig. 7. Core geometries handled by SMAC 3.1. 

One of the most important varying parameters in the DOE was the grain geometry since it significantly impacts 

the thrust profile and SRM performance. A properly selected grain geometry minimizes the cost and performance of 

the missile. The four different grains can be divided into geometries with fins (Finocyl, Star, Starocyl) and grain 

geometries without fins (BATES). Fins increase the initial area exposed to the oxidizer which creates a regressive 

thrust profile. This is beneficial for the missile design because it enables vehicle liftoff.  Finned geometries also 

introduce important variables that were explored in the DOE for example fin width, fin number, inner grain diameter, 

port diameter, and dumbbell size. A BATES geometry allows for a greater amount of propellant which translates to 

higher total thrust. Due to the different benefits of the four different geometries it was imperative to explore this 

variable in the DOE. 
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3. Propellant Section 

For the booster stage, several different propellants from the available literature were considered. Unfortunately, 

the publicly available data on propellant specific values was sparse so the down selection of the propellant was 

simple. A choice of AL + HTPB was selected based on the solid propellant’s efficiency and cost [11]. 

D. Weights & Structures 

For the weights and structures analysis, the overall missile weight and center of gravity at various points in the 

mission must be calculated. The center of gravity location impacts missile stability, so it is critical to ensure that as 

the missile burns fuel throughout the mission it remains in a stable configuration. A stress analysis of the missile body 

was also completed to demonstrate ASDL-1776’s ability to meet the requirement for high g maneuvers without 

compromising its structural integrity. 

1. Weights and Center of Gravity 

Missile weight and center of gravity (CG) locations affect stability and various flight performance requirements, 

including speed, range, and maneuverability. Weight and center of gravity location will be estimated by developing 

parametric equations using defined quantities such as wing size, booster size, airframe material, and component 

locations along the missile center axis, as well as known or estimated material densities. These equations will be 

contained in a custom MATLAB script that runs through each defined vehicle in the given DOE and will output a 

weight and center of gravity distance from nose at four flight conditions: launch, solid booster burnout, solid booster 

drop, and liquid fuel depletion. Each of these outputs will assume a full payload of 500 lbs. for initial sizing as specified 

by the RFP [1]. The assumptions and calculations used to determine the weight of each component are shown below 

in Table 5. The densities for the weight estimates are obtained from Fleeman [11]. 

The total launch weight of the vehicle 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is calculated as the sum of the weights of each of the components 

listed below in Table 5. The weights at the critical flight conditions can be calculated as shown below in Eq. (5), (6), 

and (7). 
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Table 5. Component weight estimation. 

Component/Subsystem Volume (ft3) Density (lb/ft3)  Weight (lbs.) 

Warhead 5 120.96 604.8 

Avionics 3πd2/4 69.12 Volume * Density 

Payload - - 500 

Aerodynamic Surfaces Defined in DOE 466.56 Volume * Density 

Liquid Fuel Reservoir Remaining unused volume 103.68 Volume * Density 

Ramjet 6πd2/4 466.56 Volume * Density 

Ramjet Casing Output from Stress script 466.56 Volume * Density 

Empty Structure Output from Stress script 172.8 Volume * Density 

Solid Booster Casing Defined in DOE 466.56 Volume * Density 

Solid Booster Propellant - - Output from SRM code 

 

 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ −𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (5) 

 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (6) 

 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (7) 

 

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 represents total weight at solid rocket booster burnout, 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is total weight after the booster is dropped, 

and 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is total weight after liquid fuel depletion. 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the weight of the solid rocket booster 

propellant, 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the weight of the solid rocket booster casing, and 𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the liquid fuel weight. 

The weights defined by Table 5 are then paired with a component location to calculate center of gravity location 

at each of the four flight conditions. The component locations are defined based on the packing assumptions discussed 

in Geometry. All components are assumed to have an even weight distribution, and therefore their location is defined 

as their midpoint. Then the center of gravity location at launch, 𝑥𝑥𝐶𝐶𝐶𝐶,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐ℎ , can be calculated in ft from nose as shown 

in Eq. (8). 

 𝑥𝑥𝐶𝐶𝐶𝐶,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ =
∑(𝑊𝑊1𝑥𝑥1 + 𝑊𝑊2𝑥𝑥2 + ⋯ )

𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
 (8) 
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𝑊𝑊1,𝑊𝑊2, … refer to component weights from Table 5, and 𝑥𝑥1, 𝑥𝑥2, … refer to respective component locations. The 

missile is assumed to be radially symmetric, and therefore center of gravity is only calculated in the longitudinal 

direction. The location of the center of gravity at other flight conditions are calculated as shown below in Eq. (9), (10), 

and (11). 

 𝑥𝑥𝐶𝐶𝐶𝐶,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑥𝑥𝐶𝐶𝐶𝐶 ,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ −  𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 (9) 

 𝑥𝑥𝐶𝐶𝐶𝐶,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑥𝑥𝐶𝐶𝐶𝐶 ,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ −  𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 (10) 

 𝑥𝑥𝐶𝐶𝐶𝐶,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑥𝑥𝐶𝐶𝐶𝐶 ,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 −  𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 (11) 

 

In these equations, 𝑥𝑥𝐶𝐶𝐶𝐶 ,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is CG location at solid rocket booster burnout, 𝑥𝑥𝐶𝐶𝐶𝐶,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is CG location after the 

booster is dropped, and 𝑥𝑥𝐶𝐶𝐶𝐶 ,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is CG location after liquid fuel depletion. 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the distance of the solid 

rocket booster from the nose, and 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the distance of the liquid fuel reservoir from the nose. The script will also 

simulate a varying payload for any given design to show the variation of CG location with payload weight at each of 

the four mission conditions.  

2. Structural Analysis 

A structural analysis was necessary in order to determine whether the body of the missile would be capable of 

withstanding forces throughout each of the flight profiles defined in the RFP [1]. To analyze the forces felt on the 

missile throughout the mission, hoop stress, bending, and buckling of the missile body will be considered. The missile 

body will also experience some longitudinal stress, but this is typically smaller than the hoop stress and therefore can 

be ignored. 

The analysis was based on the Georgia Tech 2014 entry to the AIAA MSTC competition [16]. The module 

calculates the required skin thickness for every separate stage of the missile based on the geometry of the missile, 

component weights, expected mass thrust and drag, chamber pressure of ramjet and solid rocket booster, and maneuver 

loads. The loads were combined to find the principal stresses acting on the body, and a factor of safety (FOS) is derived 

from the material properties. The module begins with a skin thickness of 0.1 in. and then determines the FOS for each 

stage. If all stages do not meet the minimum FOS, it then incrementally increases the thickness by 0.001 in. 

individually for each stage and reevaluates after every iteration until all stages meet the desired FOS.  
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The missile was divided into three stages based on their expected loads in order to simplify calculations. The first 

stage extended from the nose of the missile to the beginning of the ramjet chamber. The second stage was defined as 

the structure around the ramjet combustion chamber. The third stage was defined as the structure around the solid 

rocket booster.  

The monocoque structure of the missile allows for a physics-based analysis due to it being a single continuous 

part, its ability to be modeled with basic structures, and its lack of complex linkages that would be difficult to model 

without advanced finite element analysis. In order to accurately estimate a required skin thickness, several assumptions 

about the flight loads and structure of the missile needed to be made.  

The missile was assumed to be constructed of three concentric thin hollow cylinders corresponding to each of the 

three stages. The cylinders were assumed to be fixed to each other and that their linkage was significantly stronger 

than the cylinders themselves, so that any point of failure would occur on the cylinders themselves rather than the 

connection point. All cylinders were also assumed to be homogeneous and isotropic. 

All openings in the structure for actuators and other external features were assumed to have an insignificant impact 

on the strength of the structure and would be accounted for in the factor of safety. An FOS of 1.5 was selected based 

on a historical precedent for motor casings as described in Ref. [11]. The mass of the missile subsystems was assumed 

to be evenly distributed throughout the internal volume of the missile.  

The last assumption was that every load was evaluated at its maximum case simultaneously in order to obtain the 

absolute maximum stress that can be incurred on the structure. Although this evaluation would not occur or be possible 

in a normal flight, estimating at the maximum adds an additional degree of redundancy and ensures the structure would 

survive all complex load cases. The total stress is therefore calculated at simultaneous maximum thrust, maximum 

drag, and while performing terminal maneuvers. 

3. Material Selection 

Several materials were selected to create the body of the missile. The first stage was composed of Aluminum 2024-

T3 due to its strength and relatively low weight compared to other common aluminum and steel alloys [17]. 

Additionally, its extensive and common use in aerospace ensures lower development costs as its characteristics and 

machinability have been well explored. It has shown suitable qualities in similar missiles such as the Standard Missile-

2 ER and survivability at speeds of up to Mach 4.5 [18]. 
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The second and third stages involve significantly higher stresses and temperatures due to their proximity to the 

ramjet and booster, respectively. Due to this, Steel 4340 was selected because of its higher service temperature and 

relatively high yield strength [17]. Steel allows for thinner skin and thinner insulation, providing more room for the 

components inside and reducing complexity in exchange for slightly higher weight. The ramjet combustion chamber 

is lined with a coating of flame-sprayed zirconium dioxide which provides protection from the high temperatures 

created by the ramjet and resistance to oxidation [19]. 

The missile cone was constructed out of Pyroceram 9606 due to its high service temperature and common use in 

similar missiles leading to lower development costs [17]. The Pyroceram radon’s design can be modified to work a 

variety of electronic signals making ASDL-1776 more versatile in its ability to mimic numerous threats.  

More advanced materials such as composites or superalloys were not considered, as their additional development 

and production costs would not provide significant advantages to the use of ASDL-1776 as a training missile.  

1. Factor of Safety Calculation 

Bending loads due to maneuvers were estimated using a nomogram outlined by Ref. [11] as a function of applied 

g-force, length and type of loading. The applied g-force was determined to be 15 g’s as specified by the RFP [1]. The 

bending moment generated during these maneuvers 𝑀𝑀𝑏𝑏 can be calculated as a function of the mass 𝑚𝑚, acceleration 

due to gravity 𝑔𝑔, the maneuver load factor 𝑛𝑛, the length of the missile with the booster dropped 𝐿𝐿, and the loading 

condition 𝑐𝑐, as shown below in Eq. (12). 

 𝑀𝑀𝑏𝑏 =  
𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐

 (12) 

 

Maneuver loads were estimated as a rear biased linear load (c = 7.8) due to position of the fin sets [11]. The 

maximum stress due to this load is then calculated as a function of this bending moment 𝑀𝑀𝑏𝑏, the body radius 𝑟𝑟, and 

the thickness of the frame 𝑡𝑡, as shown below in Eq. (13). 

 𝜎𝜎𝐵𝐵 =  𝑀𝑀𝑏𝑏
1

𝜋𝜋𝑅𝑅2𝑡𝑡
 (13) 

 

No ejection loads were estimated since the missile surface launched, and all handling loads were assumed to be 

less than the maneuver loads.  
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Hoop stresses were considered in order to ensure the structural integrity of the second and third stages. The module 

evaluated if the structure would be able to match the desired factor of safety at the maximum pressure created from 

the ramjet and solid rocket motor (SRM) during operation. It was assumed that the only contribution to hoop stress 

was from these pressures. The stress due to these internal pressures 𝜎𝜎ℎ was calculated as a function of the chamber 

pressure 𝑃𝑃𝑐𝑐, the inner radius 𝑅𝑅, the skin thickness 𝑡𝑡, and the length of the stage 𝐿𝐿 as shown below in Eq. (14). 

 𝜎𝜎ℎ =
𝜋𝜋𝑃𝑃𝑐𝑐𝑅𝑅
𝑡𝑡

 (14) 

 

Dome stress was not considered in the module as it was assumed to be part of the combustion chamber casing, 

meaning its weight is accounted for in the ramjet engine weight estimation rather than the missile skin and structure.  

The last failure mode approximated by the design environment is buckling due to applied axial loads. The force 

applied is assumed to be the sum of the maximum drag, maximum weight, and maximum thrust that can be 

experienced by the missile. The stress induced 𝜎𝜎𝐴𝐴 is calculated as a function of the applied force 𝐹𝐹𝑐𝑐 and the cross-

sectional area of the stage 𝐴𝐴𝑐𝑐𝑐𝑐 as shown below in Eq. (15). 

 𝜎𝜎𝐴𝐴 =
𝐹𝐹𝐶𝐶
𝐴𝐴𝑐𝑐𝑐𝑐

 (15) 

E. Aerodynamics 

The aerodynamics of the missile were computed using Missile Datcom, a semi-empirical data compendium 

software for predicting missile aerodynamics for preliminary design and analysis. Missile Datcom was developed by 

the United States Air Force and is restricted under International Traffic in Arms Regulations (ITAR).  

The inputs to Missile Datcom are the geometric properties of the missile, the flight conditions to simulate, and the 

program execution settings. Missile Datcom uses a component build-up method to define the geometry of the missile. 

The geometric properties of the missile include both the shape of the missile from geometry as well as the center of 

gravity from weights and structures. Runs were made with both the booster attached and detached to model 

aerodynamics throughout all phases of flight. Missile Datcom was run over a range of angles of attack from -35° to 

35°, altitudes from 0 feet to 65,000 feet, and Mach numbers from 0.01 to 4.5. 

For each flight condition, the lift coefficient (CL), the drag coefficient (CD), and the pitching moment coefficient 

derivative with angle of attack (Cmα) are recorded. The CL and CD results are combined with the angle of attack, 
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altitude, and Mach number into a series of data look-up tables used by the trajectory optimization. Visualizations of 

the CL and CD data tables generated for a sample missile geometry are shown below in Fig. 8. 

 

Fig. 8. Lift coefficient (CL) and drag coefficient (CD) surfaces generated by Missile Datcom. 

The Cmα results are used to determine the stability of the missile. The static stability criteria require that the missile 

have an initial tendency to return to initial conditions after a disturbance. This is primarily a concern in the longitudinal 

plane, involving disturbances in the angle of attack or pitch of the missile. The longitudinal static stability criterion is 

that Cmα must be less than zero, meaning that a positive change in angle of attack results in a negative pitching moment 

and vice versa. As Cmα varies throughout the different flight conditions, it was decided that any vehicle that encounters 

a Cmα > 0 at any flight condition would be considered infeasible. While advanced flight control systems could allow 

a missile to operate with longitudinal static instability, the current criterion was deemed acceptable. A visualization 

of the changes in Cmα for a sample missile geometry are shown below in Fig. 9. 

 

Fig. 9. Pitching moment coefficient derivative with angle of attack (Cmα) 
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F. Trajectory 

The trajectory analysis will provide a method to determine if a missile architecture satisfies the mission 

requirements laid out in Table 2. The equations of motion require the models for aerodynamic forces, the thrust and 

mass flow of the propulsion systems and the initial weight from the weights and structures model. 

1. Equations of Motion 

Performing trajectory analysis requires selecting a set of equations of motion to model the kinematics of the 

missile. The propose of the trajectory analysis is primarily as a method for determining the potential performance of 

the given missile design. Selecting an optimal control design is not a part of that objective. Therefore, point-mass 

equation of motions will be used to model the missile as opposed to modeling roll, pitch, and yaw rates. Because the 

requirements only have a down-range requirement, the analysis can be simplified to a 2-D system with motion 

restricted to motion in the vertical plane. Had there been a cross-range requirement, the motion in the horizontal plane 

would have been considered as well. The missile will have a short flight as the range threshold is 60 nmi and the 

objective range is 150 nmi. Because of this, a flat, non-rotating earth system can be used.  

The first set of equations of motion are the time derivatives of velocity, or acceleration, of the vehicle, split into 

the x-axis V̇x
 and the z-axis V̇z. The x-axis and the z-axis refer to the range and altitude of the missile, respectively. 

These are a function of the mass of the vehicle m and the four primary forces experienced by the missile: lift L, drag 

D, thrust T, and weight W. The accelerations are calculated as shown below in Eq. (16) and (17). 

 𝑉𝑉𝑥̇𝑥 =
𝑇𝑇 ∗ cos (𝜃𝜃) −  1

2 𝜌𝜌𝑉𝑉
2𝑆𝑆𝐶𝐶𝐷𝐷cos (𝛾𝛾) − 1

2𝜌𝜌𝑉𝑉
2𝑆𝑆𝐶𝐶𝐿𝐿 sin(𝛾𝛾)

𝑚𝑚
 

(16) 

 𝑉𝑉𝑧̇𝑧 =  
𝑇𝑇 ∗ sin(𝜃𝜃) − 1

2𝜌𝜌𝑉𝑉
2𝑆𝑆𝐶𝐶𝐷𝐷 sin(𝛾𝛾) + 1

2𝜌𝜌𝑉𝑉
2𝑆𝑆𝐶𝐶𝐿𝐿 cos(𝛾𝛾) −𝑊𝑊 

𝑚𝑚
 

(17) 

 

The second set of equations of motion are the time derivatives of position, or velocity, of the vehicle, split into the 

x-axis ṡ and the z-axis ḣ. They are a function of the velocity of the missile V, which is numerically integrated from 

Eq. (16) and (17), and the flight path angle γ, as shown below in Eq. (18) and (19). 

 𝑠̇𝑠 = 𝑉𝑉 ∗ cos(𝛾𝛾) (18) 

 ℎ̇ = 𝑉𝑉 ∗ sin(𝛾𝛾) (19) 
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The final equation of motion is the time derivative of mass of the vehicle ṁ. As the vehicle flies, it will lose mass 

both from burning fuel ṁfuel and from dropping the boosters mbooster. The loss of fuel occurs constantly through the 

flight process while the loss of weight from the booster occurs instantaneous after the boost phase. The equation to 

calculate the change in mass is shown below in Eq. (20). 

 𝑚̇𝑚 =  𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓̇ + �𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (20) 

 

From the equations of motion, the trajectory was broken down into three flight segments, the boost phase, the 

cruise phase and then the dive or terminal phase. The boost phase was defined from launch to the solid rocket motor 

burnout, with the objective to accelerate the missile to at least Mach 2 for the ramjet. After the rocket motor burned 

out and the case dropped, the ramjet would ignite to start the cruise phase. The objective of the cruise phase was to 

maintain the designed Mach and altitude until either the objective range was met, or the liquid fuel was consumed. 

After either condition was met, the missile would enter the dive phase until ground impact, an altitude equal to zero. 

2. Aerodynamics 

The velocity and position were integrated through the equations of motion. To calculate the aerodynamic forces 

and Mach number, the 1959 ARDC Model Atmosphere model was used to determine the air density and speed of 

sound for a given flight altitude [20]. 

For all three stages, the aerodynamic coefficients for lift and drag are determined from Missile Datcom as discussed 

in Section VIII.E: Aerodynamics. The aerodynamic tables were defined and tested in Missile Datcom on a discrete 

interval as a function of the altitude, angle of attack, and Mach number. During the trajectory propagation, the 

coefficients at any altitude, angle of attack and Mach number were then calculated through the linear interpolation 

method of the data from nearest known points calculated in Missile Datcom. Two sets of data tables were required to 

model the full trajectory. During the boost phase, the aerodynamic coefficients are interpolated from the data table 

generated with a model of the booster attached to the main missile body. Then after the booster was dropped, during 

the cruise and dive phases, the aerodynamic coefficients were interpolated from a second table generated with model 

for the main missile body.  
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3. Propulsion 

During the boost phase, the thrust and mass flow rate are interpolated from a solid rocket engine deck generated 

by the solid rocket engine code as a function of the burn time. After the boost phase, there will be a check to ensure 

the missile has achieved the required Mach number to allow for safe ignition of the ramjet engine for the cruise phase. 

For an aft drop-off booster, there is an additional change in mass to account for the mass of the rocket structure.  

The thrust and mass flow rate for the cruise and dive phase were modeled using the ramjet specific impulse model 

described in Section VIII.C.1:Air-Breathing Propulsion. Under constant speed cruise conditions, the throttle setting 

would be set such that thrust equals drag. When the current speed is below the designed Mach number, the thrust 

required is solved for by using Eq. (21) below. From this equation, if the missile is flying below the design Mach 

number, the thrust required will be greater than drag to accelerate, so the throttle setting would increase. Whereas if 

the missile is flying faster than the designed Mach number, the throttle setting will decrease to decelerate. From the 

required thrust and the specific impulse, the ramjet propellant mass flow rate was calculated using Eq. (22). Once the 

liquid fuel has been consumed, the thrust and mass flow rate are both zero. 

 𝑇𝑇 =  
𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑

𝑀𝑀
∗ 𝐷𝐷(ℎ,𝑀𝑀,𝛼𝛼) (21) 

 𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓̇ =  
𝑇𝑇

𝐼𝐼𝑆𝑆𝑆𝑆(𝑀𝑀, ℎ) ∗ 𝑔𝑔
 (22) 

4. Trajectory Propagation 

The trajectory code was developed using a direct shooting method to simulate the flight of the missile. For defining 

the trajectory, the RFP defines an allowable range for the flight attitude and speed but no strict requirement [1]. These 

two variables will act as flight path constraints for the trajectory propagation problem. The cruise phase of the 

trajectory is defined by a design altitude and Mach number. The flight path angle and angle of attack acted as the 

control variables at to be able to achieve the design altitude and Mach number between each time step of the 

integration. missile must achieve a 60 nmi down-range threshold requirement with a 150 nmi objective. Discretizing 

the trajectory into small segments, the range of each missile architecture was solved for by propagating the equations 

of motion. 
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5. Midcourse Terminal Approach 

The analysis of a flight trajectory where the missile should enter the terminal phase immediately after reaching the 

cruise condition was also required. The trajectory was defined using a desired cruise speed and altitude. Once the 

cruise altitude was achieved, the trajectory propagation was stopped so the cruise phase immediately ended. Then the 

dive phase started with the objective of maximizing vertical velocity, creating a steepest decent flight profile with the 

constraint of a 75° maximum dive angle. At any point throughout the duration of the trajectory, the cruise phase could 

be terminated to allow the missile to enter the dive phase before achieving the maximum range. An example of this is 

where the maximum range is 182 nmi in Fig. 10, and then an early terminal phase was commanded at 50 nmi to hit a 

target at 52 nmi on impact as seen in Fig. 11. 

 

Fig. 10. Maximum range cruise trajectory. 

 

Fig. 11. Early terminal dive trajectory. 

6. Circular Error Probable 

ASDL-1776 will include a Guidance, Navigation, and Control System in order to program, guide, and control the 

missile trajectory. The FAA GPS Performance Analysis Report, available in Ref. [22], shows the average user range 

error accuracy to be less than 29.5 ft horizontal error and 49.2 ft vertical error, 95% of the time. Further, the measured 

performance exceeds those averages with less than 6.2 ft horizontal error and less than 12.7 ft vertical error. Thus, a 

standard Guidance, Navigation, and Control System should provide sufficient accuracy to meet the CEP requirement 

of 50 ft as well as the trajectory following requirement of ± 1500 ft as specified in the RFP [1]. 
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G. Cost and Manufacturing Modeling 

The total cost of producing each ASDL-1776 missile was estimated using a function of the weight derived from 

correlating data on similar tactical missiles in Ref. [11]. The function was modified to account for cost saving measures 

implemented in other phases of design. Using more common and less expensive alloys for the body structure was 

assumed to yield a 5% reduction in unit costs. Additionally, the Modular Avionics Control Hardware (MACH) system 

from the GQM-163A Coyote was chosen as the guidance and control system to further save on development costs. 

The MACH system is modular and the GQM-163A is capable of similar sea-skimming and high-altitude flight 

profiles, so it will be capable of meeting the requirements of the RFP [1]. This usage of the MACH system was 

assumed to yield additional 5% reduction in per unit costs. Eq. (23) was used to find the total cost per unit, where 𝐶𝐶𝑚𝑚   

is the cost in 2020 dollars and 𝑊𝑊𝑙𝑙 is the weight in pounds. 

 

𝐶𝐶𝑚𝑚 = $8640 ∗  𝑊𝑊𝑙𝑙
.64 (23) 

The cost of the entire production run was estimated based on the per unit cost with a logarithmic learning curve. 

Eq. (24) shows the cost estimate, where 𝐶𝐶𝑛𝑛 is the cost of the nth unit produced, 𝐿𝐿 is the learning curve constant, and 

𝑛𝑛 is the number of the unit produced. 90% was selected as the value for 𝐿𝐿 since it is a typical value for production 

costs [11].  

 

𝐶𝐶𝑛𝑛 = 𝐶𝐶𝑚𝑚𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙2𝑛𝑛 (24) 

The total production cost is the sum of all individual units for the production run plus the cost of the launch 

platform. 𝐶𝐶 is the total cost, 𝑁𝑁 is the number of units in the production run and 𝐶𝐶𝑙𝑙  is the cost of the chosen launch 

platform, as shown in Eq. (25). 

 

 
(25) 

 

H. Maintenance and Safety Considerations 

The role of ASDL-1776 as a target missile results in a unique operational and maintenance cycle compared to 

traditional missiles. A majority of ASDL-1776’s service life will be spent in storage until a test is authorized and it is 

deployed. Storage will likely be in a controlled facility with a set temperature and humidity and little to no vibrations 
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or shocks. This allows it to remain in storage over extended periods of time without issues such as corrosion. The 

rocket will be stored with no liquid fuel to prevent accidental combustion or leakage and will be fueled prior to launch. 

The solid booster is capable of being stored for up to 10 years without issue, meeting the requirements of the RFP [1].  

To ensure reliability, a Missile Subsystem Test Set (MSTS) test can be performed at yearly intervals or prior to 

launch to ensure functionality. Since quick deployment is not critical for a target missile, larger intervals between 

MSTS tests are practical to further reduce costs.  

The modular payload of ASDL-1776 can be varied depending on the target it is intended to mimic. This payload 

can therefore be installed during initial construction if it is fixed, or just prior to deployment if it varies between 

launches.  

IX. Design of Experiments 

The following section details the approach taken to identify the final missile design. This process included a series 

of several DOEs used as ranging experiment to understand the effect of variable on the overall performance of the 

missile as well as reduce the design space to exclude infeasible designs. Once the design space was shrunk, a final 

DOE was run to generate a list of viable vehicles. A multi-attribute decision making method known as TOPSIS was 

used to identify a final design. 

A. Body Sizing Ranging Experiment 

The objective of the first ranging experiment was to obtain a general idea for the sizing of the missile body and 

the feasibility of various parameter combinations. To that end, several parameters identified as having significant 

effects on the missile performance and feasibility were selected for the ranging experiment. As there were no previous 

results to work from, the parameter ranges selected for the first ranging experiment are quite wide. While this may 

result in designs that are either infeasible, ill-suited for the missions at hand, or both, it provides an initial guess for 

developing more intelligent ranges for future experiment. The selected parameters and their ranges are shown below 

in Table 6. The parameters that were not selected for varying in the DOE had to be set to a default value. These values 

were rough estimates of appropriate values and would be further explored in later a later DOE. The defaulted 

parameters are shown below in Table 7. As the solid booster grain geometry was defaulted to Bates, which is a simple 

geometry, there were no values for several of the complicated solid motor geometry parameters. 
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Table 6. Variables and ranges for body sizing ranging experiment. 

Parameter Minimum Maximum 

Missile Length 10 ft 40 ft 

Missile Fineness Ratio 5 20 

Nose Fineness Ratio 2 5 

Wing Total Area 5 ft2 25 ft2 

Wing Trailing Edge Location Ratio 45% 80% 

Tail Total Area 1 ft2
 5 ft2 

Tail Trailing Edge Location Ratio 80% 100% 

Inlet Total Area 0.5 ft2 3 ft2 

Solid Booster Stage Length Ratio 10% 40% 

Solid Booster Grain Inner Diameter Ratio 10% 35% 

 

Table 7. Variables and ranges for first design of experiments. 

Parameter Default 

Inlet-Wing-Tail Configuration 4/4/4 

Solid Booster Stage Diameter Ratio 100% 

Solid Booster Grain Geometry Bates 

Solid Booster Grain Fins - 

Solid Booster Grain Port Diameter Ratio - 

Solid Booster Grain Dumbbell Diameter Ratio - 

Solid Rocket Grain Fin Width Ratio - 
 

A DOE containing 500 sample vehicles was created in JMP, a statistical analysis suite. The vehicles were 

distributed using Latin hypercube sampling, a space filling method useful for computer-based experiments. The 

vehicles were run through the missile design environment, but only through the high diver flight profile, not the sea 

skimming flight profile. The results were collected and the parameters from the design of experiments were compared 

against the results to identify trends and patterns. 

The first result explored is whether the vehicles meets the payload diameter constraint. The payload bay must have 

a diameter of at least 10 inches, as discussed in Section VIII.B.2: Internal Geometry. Additionally. there also must be 

space for the structural skin surrounding the payload, as discussed in Section VIII.D.2: Structural Analysis. If the 

missile diameter is less than the sum of the structural skin thickness and the payload diameter constraint, then the 
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vehicles does not meet the constraint. Of the 500 vehicles ran, 446 met the payload diameter constraint, an 89.2% 

success rate. A constraint scatterplot matrix showing the vehicles that meet or break the payload diameter constraint, 

shown in black and gray respectively, plotted against the missile length, missile fineness, and resulting missile 

diameter is shown below in Fig. 12. 

 

Fig. 12. Scatterplot matrix of missile length, missile fineness, and missile diameter highlighting payload 

diameter constraint 

A constraint frontier occurs around a missile diameter of 1 ft. When a filter is applied to only include vehicles with 

a missile diameter equal to or greater than 1 ft, all 446 vehicles in the filter meet the payload diameter constraint, a 

100% success rate as compared to 89.2% without excluding any viable vehicles. The same constraint frontier appears 

on the missile length versus missile fineness ratio scatterplot, though in the form of a diagonal line. This makes it 

difficult to downsize the missile length or missile fineness ratio DOE ranges without excluding viable vehicles.  

The second result explored is whether the vehicles meet the fuel volume constraint. The fuel tank must have a 

positive volume, as discussed in Section VIII.B.2: Internal Geometry. If the design of the missile is such that the 

volume of the fuel tank is negative, then the vehicles does not meet the fuel volume constraint. Of the 500 vehicles 

ran, 331 met the fuel volume constraint, a 66.2% success rate. A constraint scatterplot showing the vehicles that meet 

or break the fuel volume constraint plotted against the missile length, missile fineness, nose fineness, and resulting 
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center body length is shown below in Fig. 13. Center body length is the total length of the missile minus the booster 

length and the nose length. 

 

Fig. 13. Scatterplot matrix of missile length, missile fineness, nose fineness, and center body length 

highlighting fuel volume constraint 

 A constraint frontier occurs exactly at a center body length of 12.5 ft. This total is a consequence of the 3 ft 

required for the avionics package, the 3.5 ft required for the payload, and the 6 ft required for the ramjet. Another 

frontier appears on missile length around 15 ft, where there were no viable vehicles below 15 ft. When a filter is 

applied to only include vehicles with a missile length equal to or greater than 15 ft, 330 vehicles meet the fuel volume 

constraint out of 416 total vehicles in the filter, a 79.3% success rate as compared to the 66.2% while only excluding 

one successful vehicle. Missile fineness ratio and nose fineness ratio both contain diagonal frontiers, but no clear 

indication on how to limit their ranges to reduce the number of invalid vehicles without excluding viable vehicles. 

The third result explored is whether the vehicles meet the stability constraint. The pitching moment coefficient 

derivative with angle of attack (Cmα) must be negative for the missile to have longitudinal static stability. Therefore, 

if the vehicle design results in a Cmα
 that is positive, then the vehicle does not meet the stability constraint. Of the 441 

vehicles that successfully ran through Missile Datcom without crashing, 134 met the stability constraint, a 30.4% 

success rate. A constraint scatterplot matrix showing the vehicles that meet or break the stability constraint plotted 
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against the missile length, missile fineness ratio, and resulting missile diameter and Cmα is shown below in Fig. 14. 

Another constraint scatterplot plotted against the total wing area, wing trailing edge percentage, total tail area, tail 

trailing edge percentage, and resulting Cmα is shown below in Fig. 15. 

 

Fig. 14. Scatterplot matrix of missile length, missile fineness, missile diameter, and Cmα highlighting stability 

constraint 

Three constraint frontiers are identifiable in Fig. 14: a missile length of 30 ft, a missile fineness ratio of 10, and a 

missile diameter of 2 inches. When a filter is applied to only include vehicles with a missile length equal to or less 

than 35 ft and missile fineness equal to or greater than 10, 132 vehicles meet the stability constraint out of 236 total 

vehicles in the filter, a 55.9% success rate as compared to 30.4% while only excluding 2 successful vehicles. 

Alternatively, when a filter is applied to only include the vehicles with a missile diameter equal to or less than 2 ft, 

134 vehicles meet the stability constraint out of 247 total vehicles in the filter, a 54.3% success rate while excluding 

no successful vehicles. Surprisingly, no constraint frontiers appear for any of the fin sizing parameters in Fig. 15. This 

was unexpected as sizing and locations of the wing and tail were expected to be significant problems in properly 

stabilizing the missile. Instead, the geometry of the main body of the missile has the greatest effect on stability.  
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Fig. 15. Scatterplot matrix of wing area, wing trailing edge percentage, tail area, tail trailing edge percentage, 

and Cmα highlighting stability constraint 

The fourth result explored is whether the vehicles meet the boost constraint. From testing the trajectory code, it 

was discovered that vehicles that are unable to achieve a speed of Mach 1.75 after the initial boost phase are unlikely 

to complete a successful cruise phase. Therefore, if the vehicle results in a booster termination speed of less than Mach 

1.75, then the vehicle does not meet the boost constraint. Only vehicles that met both the diameter constraint and the 

fuel volume constraint were run through the boost phase. Of the 500 vehicles, only 321 met both constraints. Of the 

321 vehicles, only 287 successfully ran through trajectory. Of the 287 vehicles that successfully ran through trajectory, 

31 met the boost constraint, a 13.9% success rate. 256 of the vehicles were not able to meet the boost constraint while 

34 vehicles resulted in the code failing, not providing any result. A constraint scatterplot matrix showing the vehicles 

that meet or break the boost constraint plotted against the missile length, missile fineness ratio, resulting missile 

diameter and resulting boost Mach number is shown below in Fig. 16. Another constraint scatterplot matrix plotted 
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against the solid booster stage length ratio, solid booster grain inner diameter ratio, resulting solid booster stage length, 

and resulting boost Mach number is shown below in Fig. 17. 

 

Fig. 16. Scatterplot matrix of missile length, missile fineness ratio, missile diameter, and boost Mach number 

highlighting boost constraint 

Three constraint frontiers are identifiable in Fig. 16: a missile length of 25 ft, a missile fineness of 17, and a missile 

diameter of 2.3 ft. Two constraint frontiers are identifiable in Fig. 17: a solid stage length ratio of 0.15 and a stage 

length of 5 ft. When a filter is applied to only include vehicles with a missile length greater than or equal to 25 feet, a 

missile diameter greater than 2 ft, and a solid stage length ratio greater than or equal to 0.15, 31 vehicles meet the 

boost constraint out 90 total vehicles in the filter, a 34.4% success rate as compared to 13.9% without excluding a 

single successful vehicle.  
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Fig. 17. Scatterplot matrix of solid booster stage length ratio, solid booster grain inner diameter ratio, solid 

booster stage length, and boost Mach number highlighting boost constraint 

The final set of results explored were the overall performance of the missile. The primary metrics of interest were 

the range achieved by the high diver flight profile, the total missile weight, and then booster mass fraction. A 

scatterplot matrix showing the vehicles that were successfully able to complete the boost phase in black plotted against 

missile length, missile fineness ratio, resulting missile diameter, solid stage length ratio, and resulting solid stage 

length on the x-axis and range and total missile weight on the y-axis is shown below in Fig. 18. 
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Fig. 18. Scatterplot matrix of missile performance metrics against significant DOE parameters 

The range achievable by the missile designs are highly varied by the input parameters. The vehicles that were 

successfully able to achieve the necessary boost speed are distributed across the range spectrum without much clear 

distinction for their input parameters. The total missile weight, on the other hand, is highly tied to the input parameter. 

Both as missile length and missile diameter increase, the total missile weight increases. This is unsurprising as the 

missile getting larger is expected to make it heavier. As missile fineness ratio increases, the total missile weight 

decreases, mirroring the logical result from the missile length and missile diameter. Surprisingly, solid stage length 

ratio does not have a clear trend on the overall missile weight. Solid stage length does have a minor upwards trend, 

due to the fact it only effects the size of part of the missile. 

Overall, the body sizing ranging experiment showed that a significant number of the vehicles were not viable. The 

number of vehicles that were able to meet each of the constraints is shown below in Table 8. 

Table 8. Number of vehicles meeting constraints for body sizing ranging experiment 

Constraint Payload Diameter 
Constraint 

Fuel Volume 
Constraint 

Stability 
Constraint 

Boost 
Constraint 

All 
Constraints 

Met 446 331 134 31 0 

Failed 54 169 366 469 500 
 

Out of all 500 vehicles, none were able to meet all the constraints. While there were no successful vehicles in the 

ranging experiment, the results can still be used to inform the ideal ranging of variables for future DOEs. Based on 
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the results from the constraint scatterplots, a new set of parameter ranges were established to reduce the number of 

unviable vehicles without significantly reducing the number of viable vehicles. In selected the new parameter ranges, 

missile fineness ratio was removed as a parameter and replaced with missile diameter. This is because including 

missile diameter as a parameter provides more accuracy in removing infeasible vehicle designs. Additionally, there 

are conflicting requirements by the stability and boost constraints. Stability requires that missile diameter be less than 

2 ft while boost requires that missile diameter be greater than 2 ft. While stability is primarily affected by parameters 

that varied in the DOE, there were several parameters defaulted in the DOE that could affect the ability to meet the 

boost constraint, such as the solid booster stage diameter ratio. For that reason, missile diameter was set to a maximum 

of 2 ft to meet the stability requirements while a later design of experiments was run to explore how to meet the boost 

constraint, as discussed in Section VIII.C.2: Boost Phase The list of the changes to the parameter ranges is included 

below in Table 9. 

Table 9. Parameter range updates from body sizing ranging experiment. 

Parameter 
Old Range Updated Range 

Minimum Maximum Minimum Maximum 

Missile Length 10 ft 40 ft 17 ft 30 ft 

Missile Fineness Ratio 5 20 - - 

Missile Diameter - - 1.033 ft 2 ft 

Solid Booster Stage Length Ratio 10% 40% 10% 80% 
 

The vehicles from the body sizing ranging experiment that fit within the new parameter ranges were collected to 

see the results on the constraints. Of the 500 vehicles, 116 fall within the new ranges. The number of vehicles within 

the new parameter ranges meeting the constraints are shown below in Table 10. 

Table 10. Number of vehicles meeting constraints for body sizing ranging experiment with updated ranges. 

Constraint Payload Diameter 
Constraint 

Fuel Volume 
Constraint 

Stability 
Constraint 

Boost 
Constraint 

All 
Constraints 

Met 116 101 70 0 0 

Failed 0 15 46 116 116 
 

The restriction of the vehicles to only those within the updated parameter ranges significantly improves 

performance for the payload diameter constraint, fuel volume constraint, and stability constraint. Payload diameter 
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constrain compliance increases from 89.2% to 100%. Fuel volume constraint compliance increases from 66.2% to 

87.1%. Stability constraint compliance has the greatest increase from 30.4% to 60.3%. Boost constraint has a decrease 

in compliance from 13.9% to 0%, which is to be expected given the limitations on missile diameter. Because of these 

improvements in constraint compliance, these ranges will be used in later DOEs. 

B. Solid Booster Ranging Experiment 

The objective of the solid booster ranging experiment was to obtain ideal sizing ranges for parameters of the solid 

booster. The parameters of interest are those related to the overall sizing and weight of the missile as well as the size 

and geometry of the solid booster. The ranges for the parameters are informed from the initial body sizing ranging 

experiment. The selected parameter and their ranges are shown below in Table 11. The parameters not selected for 

varying in the solid booster ranging experiment had to be set to a default value. The defaulted parameters are shown 

below in Table 11. 

Table 11. Variables and ranges for body sizing ranging experiment. 

Parameter Minimum Maximum 

Missile Length 15 ft 30 ft 

Missile Diameter 1 ft 2 ft 

Nose Fineness 2 5 

Solid Booster Stage Diameter Ratio 0.50 2.00 

Solid Booster Stage Length Ratio 0.10 0.50 

Solid Booster Geometry Type Bates Finocyl Star Starocyl 

Solid Booster Grain Inner Diameter Ratio 0.05 0.50 

Solid Booster Fin Count 2 8 

Solid Booster Fin Width Ratio 0.01 0.10 
 

A DOE containing 500 sample vehicles was created in JMP. The vehicles were distributed using fast flexible 

filling, a space filling method capable of distributing continuous and categorical variables. The vehicles were run 

through the missile design environment up through the high diver boost phase, but not through the cruise phase. 

The only constraint of concern for this ranging experiment is the boost constraint. Of the 500 vehicles ran, 343 

successfully ran through trajectory without the code failing. Of the 343 vehicles that successfully ran through 

trajectory, 55 met the boost constraint, a 16.0% success rate. A constraint scatterplot matrix showing the vehicles that 
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meet or break the boost constraint plotted against missile length, missile diameter, solid stage diameter ratio, solid 

stage length ratio, and solid stage geometry type on the y axis and boost Mach number on the y-axis is shown below 

in Fig. 19. 

 

Fig. 19. Scatterplot matrix of missile performance metrics against significant DOE parameters. 

Two constraint frontiers are identifiable in Fig. 19: a solid stage diameter ratio of 100% and a solid stage length 

ratio of 20%. When a filter is applied to only include the vehicles with a solid stage diameter ratio greater than or 

equal to 100% and a solid stage length ratio greater than or equal to 20%, 54 vehicles meet the boost constraint out of 

166 vehicles in the filter, a 32.5% success rate as compared to 16.0% while only excluding one viable vehicle. 

 Based on the results from the constraint scatterplot, a new set of parameter ranges were established. Because of 

the possibility of viable results beyond the initial estimated parameter range, the new maximum solid booster stage 

length ratio was selected to be 0.80. The list of the changes to the parameter ranges is included below in Table 12. 

Table 12. Parameter range updates from solid booster ranging experiment. 

Parameter 
Old Range Updated Range 

Minimum Maximum Minimum Maximum 

Solid Booster Stage Length Ratio 0.10 0.50 0.20 0.80 

Solid Booster Stage Diameter Ratio 0.50 2.00 1.00 2.00 
 

Because the minimum solid booster stage diameter ratio has been raised to 100%, any future vehicle will have a 

solid motor with a diameter as large as if not larger than the main missile. This means that the use of an integral rocket-

ramjet is not a feasible configuration as the solid booster must be smaller than the diameter of the missile to fit within 

the ramjet. All potential designs in the final DOE must be external aft-drop off boosters. 
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C. Final Design of Experiments 

The final DOE serves as the last DOE of the exploration process. The results of the final DOE will be used to 

select the final design. Based on the results of the ranging experiments, the parameters and ranges for the final DOE 

were selected. The parameters and ranges for the final DOE are shown below in Table 13. 

Table 13. Variables and ranges for first design of experiments. 

Parameter Minimum Maximum 

Missile Length 17 ft 30 ft 

Missile Diameter 1.033 ft 2 ft 

Nose Fineness Ratio 2 5 

Inlet-Wing-Tail Configuration 3/0/3 3/3/3 4/0/4 4/2/4 4/4/4 

Wing Total Area 5 ft2 25 ft2 

Tail Total Area 1 ft2
 5 ft2 

Inlet Total Area 0.5 ft2 3 ft2 

Solid Booster Stage Length Ratio 0.20 0.80 

Solid Booster Stage Diameter Ratio 1.00 2.00 
 

A DOE containing 1,000 sample vehicles was created in JMP. The vehicles were distributed using fast flexible 

filling. All 1,000 vehicles were initially run through the pre-trajectory disciplines: geometry, propulsion, weights and 

structures, and aerodynamics. The number of vehicles that were able to make the various constraints during the pre-

trajectory runs are shown below in Table 14. 

Table 14. Number of vehicles meeting pre-trajectory constraints for final selection DOE. 

Constraint Payload Diameter 
Constraint 

Fuel Volume 
Constraint 

Stability 
Constraint 

Pre-Trajectory 
Constraints 

Met 1,000 855 821 765 

Failed 0 115 179 235 
 

All 1,000 vehicles were able to meet the payload diameter constraint. This is because DOE contained the missile 

diameter parameter instead of the missile fineness ratio parameter. The minimum missile diameter was set high enough 

that all vehicles were able to meet the constraint. 855 of the vehicles were able to meet the fuel volume constraint. 

This occurred primarily for vehicles with low missile lengths and high nose fineness ratios, however neither the missile 
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length nor nose fineness ratio ranges could be reduced without excluding valid configurations. Therefore, the ranges 

for the missile length and nose fineness ratios values was properly set for the fuel volume constraint. 821 of the 

vehicles were able to meet the stability constraint. This occurred primarily for vehicles with high missile diameters 

and high nose fineness ratios, however, as with the fuel volume constraint, neither parameter could be reduced without 

excluding valid configurations, meaning the parameter ranges were properly set. 765 of the vehicles met all the pre-

trajectory constraints when applied together. These 765 vehicles were then run through the boost phase of the 

trajectory for both the sea skimming and high diver profiles. The number of vehicles able to make the boost constraints 

of between Mach 2 and Mach 4.5 are shown below in Table 15. 

Table 15. Number of vehicles meeting boost constraints for final selection DOE. 

Constraint Sea Skimming 
Boost Constraint 

High Diver Boost 
Constraint 

Combined Boost 
Constraint 

Exceeded 42 14 - 

Met 189 230 171 

Failed 534 521 594 
 

Of the 765 vehicles to run through the boost phase, 189 were able to meet the boost constraint for the sea skimming 

flight profile and 230 were able to meet the boost constraint for the high diver flight profile. The sea skimming flight 

profile had 534 underperforming vehicles and 42 overperforming vehicles while the high diver flight profile had 521 

underperforming vehicles and 14 overperforming vehicles. 171 vehicles were able to meet the boost constraints for 

both the flight profiles where 594 either underperformed or overperformed for at least one of the flight profiles. The 

189 successful sea skimming vehicles and the 230 successful high diver vehicles were then run through the cruise and 

termination phases of the trajectories for their respective flight profiles. The number of vehicles able to make the range 

constraint of 60 nmi are shown below in Table 16. 
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Table 16. Number of vehicles meeting range constraints for final DOE. 

Constraint Sea Skimming 
Range Constraint 

High Diver 
Range Constraint 

Combined Range 
Constraint 

Met 47 97 44 

Failed 142 133 - 
 

Of the 47 vehicles that made the sea skimming range constraint, 5 did not make the high diver boost constraint. 

All 5 of the vehicles were underperforming in the high diver boost phase, with Mach numbers below 2. Therefore, 

none of the 5 vehicles were initially run through the high diver cruise phase. Those 5 vehicles were manually passed 

through the high diver cruise phase, removing the Mach 2 boost constraint. Of the vehicles, 2 were successfully able 

to complete the high diver cruise phase and achieve the high diver range constraint while the other 3 vehicles were 

unsuccessful in completing the high diver cruise phase. Of the 97 vehicles that initially made the high diver range 

constraint, 45 did not make the sea skimming range constraint. All 45 of the vehicles were overperforming in the sea 

skimming boost phase, with Mach numbers above 4.5. This is the opposite problem encountered with the successful 

sea skimming vehicles. This is because the high diver boost phase is more demanding on the solid motors due to the 

need to gain altitude, requiring more energy be converted into potential energy. As the sea skimming boost does not 

gain significant altitude, the energy can be focused into kinetic energy, resulting in a higher speed. Mach 4.5 starts to 

encroach upon hypersonic flight, which the missile environment was not designed to handle due to the lack of 

aerothermal analysis. Additionally, the aerodynamic tables generated by Missile Datcom did not go beyond Mach 4.5. 

For that reason, none of the 45 vehicles were included in the final list of viable vehicles. In the end, 44 total vehicles 

were revealed as viable designs. A scatterplot matrix showing the viable alternatives in black plotted against a weight 

and range performance metrics is shown below in Fig. 20. 
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Fig. 20. Scatterplot matrix of missile performance metrics against significant DOE parameters. 

Selecting a final design from the 44 viable vehicles requires a tradeoff between several competing performance 

characteristics. Of the 44 viable vehicles, no vehicle is the best for all the performance characteristics. Therefore, 

selecting a final design from the viable vehicles requires the use of a multi-attribute decision making (MADM) 

process. The MADM technique chosen was the Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS). TOPSIS works by identifying the best solution based on which alternative is the closest to a given positive 

ideal solution and the further from a given negative ideal solution. The positive ideal solution is a hypothetical solution 

with the most desirable criteria values out of the possible alternatives.  

TOPSIS requires the identification of quantitative criteria to be used as objectives as well as whether they should 

be minimized or maximized as well as a relative weight. The sum of the weights of all the criteria must add up to 1. 

There are three primary performance characteristics to differentiate between the viable designs: overall missile weight, 

sea skimming range, and high diver range. Overall missile weight was selected as it is a surrogate for the total cost of 

the missile. Overall missile weight should be minimized. Overall missile weight was given a weighting of 0.5 because 
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of the important of making a cost-effective target missile. The sea skimming and high diver range were selected as 

the RFP describes an objective range of 150 nmi. Both ranges should be maximized. As both ranges are important to 

modeling different threats, the criteria were both given equal weights of 0.25. While metrics like booster mass fraction 

and liquid fuel mass fraction are important performance characteristics, they are not good metrics 

The positive ideal solution (S*) is found by taking the best possible value for each of the criteria. The negative 

ideal solution (S-) is found by taking the worst possible value for of the criteria. The criteria values for the positive 

ideal solution and the negative ideal solution are shown below in Table 17. 

Table 17. TOPSIS positive and negative ideal solutions. 

Criteria Overall Missile 
Weight 

Sea Skimming 
Range 

High Diver 
Range 

Positive Ideal Solution 5,319 lbs. 152.3 nmi 195.8 nmi 

Negative Ideal Solution 20,163 lbs. 63.1 nmi 108.8 nmi 
 

To perform TOPSIS, the values of each attribute are normalized by the sum of squares of all the values for that 

criteria. Next, the relative importance is found by multiplying the normalized values by the criteria weights. Then, the 

Euclidean distances between the relative importance of each alternative and the relative importance of the positive 

and negative ideal solutions are found. Finally, the relative closeness (Ci) for each alternative is found by dividing the 

distance from the negative ideal solution by the sum of the distances to both the ideal solutions. The alternative with 

the highest Ci is the best alternative. A scatterplot matrix of the possible alternatives plotted on the three criteria is 

shown below in Fig. 21. The alternatives are colored based on their Ci value, with high Ci values shown in green and 

low Ci values shown in red. Additionally, the locations of the positive and negative ideal solutions are shown on each 

plot in the matrix. 
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Fig. 21. Scatterplot matrix of missile performance metrics colored by TOPSIS performance. 

The positive ideal solution appears in the top left of the weight vs high diver range and weight vs sea skimming 

range scatterplots due to the fact that weight is ideally minimized while it appears in the top right of the sea skimming 

range vs high diver range scatterplot. As designs approach the positive ideal solution in each of the scatterplots, their 

Ci approaches 1, though with some exceptions due to the multidimensionality of the problem. The top 5 performing 

TOPSIS alternatives as measured by Ci along with their criteria performance are shown below in Table 18. 

Table 18. Top 5 TOPSIS alternatives. 

Rank Vehicle Number Ci Weight (lbs.) Sea Skimming Range (nmi) High Diver Range (nmi) 

1 411 0.955 6,039 152.1 195.5 

2 915 0.849 5,319 104.2 194.2 

3 852 0.845 7,415 128.7 193.2 

4 898 0.782 8,863 152.2 195.8 

5 480 0.769 8,837 132.9 189.7 
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The standout best performing alternative is Vehicle 411. While it does not feature any highest performing 

attributes, it is only 0.2 nmi off from the maximum sea skimming range and 0.3 nmi off from the maximum high diver 

range. This is all accomplished while being the second lightest vehicle, only beaten out by the second place, Vehicle 

915. Vehicle 915 is 720 lbs. lighter than Vehicle 411 and has a similar high diver range but underperforms in sea 

skimming range by 47.9 nmi. While Vehicle 915 may be an appealing alternative if weight was the absolute deciding 

factor, the competing desires of the three criteria makes Vehicle 411 the overwhelming top performer. For that reason, 

Vehicle 411 was selected as the final baseline. 

D. Final Design Changes 

From the final design of experiments, Vehicle 411 was selected as the architecture that performed the best against 

the design criteria for the high-diver and the surface skimming profile. However, it was found that in both the surface 

skimming and the high-diver flight profiles that the vehicle was able to achieve the objective range while having 

reserve fuel. Because it is a target missile that will land in a safe test range, there was no need to have fuel reserves. 

For this reason, final design changes were made such that no fuel would be left in reserve and be wasted upon terminal 

impact. The weight-capacity of the liquid fuel cell on Vehicle 411 was reduced by 250 lbf to become the ASDL-1776 

PROMISE. Table 19 shows the weight breakdown of the Vehicle 411, the best architecture from the design of 

experiments, and the ASDL-1776. 

Table 19. Final Design Changes. 

Weight (lbs.) Vehicle 411 ASDL-1776 

Launch Weight 6039.50 5789.50 

Booster Weight 1901.80 1901.80 

Main Body Weight 4137.70 3887.70 

Ramjet Fuel Weight 1468.41 1218.41 

Empty Weight 2669.28 2669.28 
 

X. Results 

Chapter IX identified the optimal missile architecture that is able achieve the objective ranges for the high-dive 

and the sea-skimming flight profiles, the ASDL-1776. The following sections will provide a detailed discussion on 

the properties and performance of the ASDL-1776. 
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A. Geometry 

The geometry of the ASDL-1776 was taken from the DOE parameters used to define vehicle 411. Those 

parameters are shown below in Table 20. Additionally, the remaining geometric parameterization of the ASDL-1776 

is shown below in Table 21. 

Table 20. DOE parameters of the ASDL-1776. 

DOE Parameter Value 

Missile Length 29.46 ft 

Missile Diameter 1.496 ft 

Nose Fineness Ratio 4.163 

Inlet-Wing-Tail Configuration 4/0/4 

Wing Total Area 2.562 ft2 

Tail Total Area 1.362 ft2 

Inlet Total Area 1.362 

Solid Booster Stage Length Ratio 0.1322 

Solid Booster Stage Diameter Ratio 1.464 

Table 21. Remaining geometric parameters of the ASDL-1776. 

Geometric Parameter Value 

Total Missile Length 33.35 ft 

Nose Length 6.229 ft 

Center Body Length 23.23 ft 

Booster Length 3.894 ft 

Booster Diameter 2.192 ft 

Missile Fineness 19.69 

Booster Fineness 1.776 
 

A visual rendering of the final missile design, including all design features and the official ASDL-1776 PROMISE 

logo is shown below in Fig. 22. 

 

Fig. 22. ASDL-1776 PROMISE visual rendering. 
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B. Weights and Structures 

1. Weight and Center of Gravity 

The selected missile design minimizes weight and has a stable CG location while meeting all trajectory 

requirements as stated in the RFP. Minimizing weight is a key design goal, as weight is a proxy for cost as shown in 

Section VI.G: Cost and Manufacturing Modeling, and CG location is critical to missile stability. The specifications 

for the selected missile are summarized in Table 22. 

Table 22. Weight and CG results. 

Mission Segment Weight (lbs.) Center of Gravity (ft from nose) 

Launch 5,789.5 20.12 

Solid Booster Burnout 4,204.6 16.10 

Solid Booster Drop 3,887.7 14.93 

Liquid Fuel Depletion 2,669.3 13.19 

 

 The weight results ensure that ASDL-1776 will meet all mission objectives and requirements without unnecessary 

weight, cost or complexity. The CG results ensure that the missile will remain in a stable configuration throughout the 

full mission. These results assume a full payload of 500 lbs. A variable payload was also simulated, showing the effect 

of payload weight on CG location during each mission segment. The results can be seen in the plots in Fig. 23, Fig. 

24, Fig. 25, and Fig. 26 for launch, solid booster burnout, solid booster drop, and liquid fuel depletion, respectively. 

 The CG location moves further aft in each of the four cases as the payload departs from its maximum weight of 

500 lbs. This is to be expected, as the payload is located towards the front end of the missile. However, since the 

payload is a relatively small proportion of the overall missile weight, the effect on CG is rather small. The largest 

difference between CG with full payload and CG with empty payload is the launch condition, where a CG shift of 

0.864 ft (10.368 in) rearward is recorded as the payload is decreased from full weight to empty. This small CG shift 

should allow for a stable missile configuration even if a payload with less weight (or no payload at all) was flown. 
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Fig. 23. Launch CG variation with payload 

weight. 

 

Fig. 24. Solid booster burnout CG variation with 

payload weight. 

 

Fig. 25. Solid booster drop CG variation with 

payload weight. 

 

Fig. 26. Liquid fuel depletion CG variation with 

payload weight. 

2. Stress Analysis 

The results of the stress analysis gave necessary wall thickness of the overall missile body, the solid rocket booster 

casing, and the ramjet motor casing, as well as a factor of safety for each. The results are summarized in Table 23. 
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Table 23. Stress analysis results. 

Component Thickness (ft) Factor of Safety 

Missile Body 0.1818 1.5 

Solid Booster Casing 0.1490 1.5 

Ramjet Casing 0.2186 1.5 
 
With the thicknesses shown above and a sufficient factor of safety for each of the casings, the missile can be 

considered capable of withstanding 15 g maneuvers without damage to the structure. Since 15 g is the maximum g-

force that the missile is required to withstand per the RFP, ASDL-1776 will be capable of performing all necessary 

high g maneuvers [1]. 

C. Trajectory 

The trajectory was analyzed using two different codes, tailored specifically to be able to handle their respective 

flight profiles. With BrahMos being the most formidable adversary in operations, and the GQM-163a Coyote being a 

current target missile; the flight trajectories were defined to have similar or improved operations. As referenced in 

Section V.I.B: Motivation and Existing Systems, BrahMos is capable of Mach 3 at 50,000 ft for a high dive profile, 

and down below 250 ft at what is likely a slower speed. The Coyote is capable of Mach 3-4 at 55,000 ft or around 

Mach 2.6 in a sea-skimming flight profile.  

1. High Dive Flight Profile 

 For the high-dive profile, the target cruise speed was set to Mach 3.25 with a cruise altitude of 50,000 ft. This 

places the designed capabilities within the realm of the Coyote and being faster the openly reported speed of the 

BrahMos missile. To characterize the flight profile of the ASDL-1776 missile, Fig. 27 through Fig. 30 show the 

altitude, range and velocity time history during the flight. The boost phase achieves Mach 2.05, which provides a safe 

ramjet ignition condition to avoid a failed-ignition or flameout during the early stages of the cruise phase. Once in the 

cruise phase, the missile climbs to achieve the trajectory design altitude of 50,000 ft and reach the cruise speed of 

Mach 3.25. During the dive phase of the trajectory, the missile has a terminal impact speed of Mach 2.99 with terminal 

dive angle of 74.5 degrees. The total flight time for the high dive trajectory is 386.5 seconds for an untrained range of 

182.16 nmi. Meaning the trajectory can be refined such that the missile will hit the 150 nmi range target. The time to 

cruise altitude is 37.5 seconds. 
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Fig. 27. Time history of high dive flight altitude. 

 

Fig. 28. Time history of high dive range. 

 

Fig. 29. Time history of high dive velocity. 

 

Fig. 30. Time history of high dive Mach number. 

 During the propagation of the trajectory, mass flow and the launch weight mass fraction are used to determine 

when the rocket motor and the ramjet burnout occurs. Fig. 31 and Fig. 32 show the flight time histories of the overall 

weight, and the propellant mass flow. At the flight time 7.5 s, the rocket motor burnouts out and the booster is dropped. 

The empty weight of the missile is 2669.28 lbf while the high diver profile ends at impact weight of 3274 lbf. At full 

fuel capacity the missile has an excess fuel capacity of 604.7 lbf so the launch crew can choose to not fill the liquid 

fuel to full capacity for the operation of a high-dive missile defense training flight.  
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Fig. 31. Time history of high dive overall weight. 

 

Fig. 32. Time history of high dive fuel mass flow. 

 Fig. 33 shows the Thrust to weight and lift to drag ratios during the boost phase, and Fig. 34 shows altitude versus 

range. To size the launch rail length, the missile length of 29.5 ft will be used for reference. From ignition, the missile 

takes 0.3 seconds to travel 29.5 ft. At this point the thrust to weight ratio is 1.5 so the booster can support the missile 

during flight without requiring the stability of the rail. This argument is supported by Fig. 35, showing that missile 

continues to travel along a nearly constant flight path. For a high dive profile, the launch rail can be set to 29.5 ft with 

a launch azimuth of 45°. Fig. 35 shows the time history of the flight angle of attack, pitch angle and flight path angle. 

Fig. 36 shows aerodynamic and propulsive forces. Using the Bates grain geometry, the maximum thrust of the rocket 

motor was about 63,200 lbf with a thrust to weight ratio of 13.4 occurring about 2 seconds before burnout. During the 

cruise phase the flight path angle and the angle of attack was solved to maintain a constant altitude. The thrust was 

defined to accelerate from the boost phase to Mach 3.25 and then sustain a velocity of Mach 3.25. 
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Fig. 33. High dive thrust to weight and lift to drag 

ratios during boost phase. 

 
Fig. 34. High dive altitude vs range. 

 
Fig. 35. High dive time history of flight angle of 

attack, pitch angle, and flight path angle. 

 
Fig. 36. High dive aerodynamic and propulsive 

forces. 

 

Fig. 37 and Fig. 38 shows the flight trajectory and Mach number for a high dive with a terminal phase occurring 

immediately after reaching the cruise altitude. The missile has a time to cruise altitude of 37.5 seconds, and under the 

75° dive angle constraint has an early-impact range of 13.5 nmi. 
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Fig. 37. Flight trajectory for high dive. 

 

Fig. 38. Mach number for high dive. 

2. Sea Skimming Flight Profile 

For the high-dive profile, the target cruise speed was set to Mach 2.75 with a cruise altitude of 195 ft. This places 

the designed capabilities within the realm of the Coyote and being faster the openly reported speed of the BrahMos 

missile. To characterize the flight profile of the ASDL-1776 missile, Fig. 39 through Fig. 42 show the altitude, range 

and velocity time history during the flight. The boost phase achieves Mach 2.23, which provides a safe ramjet ignition 

condition to avoid a failed-ignition or flameout during the early stages of the cruise phase. For a Mach 2.75 at 195 ft 

cruise phase, the missile is capable achieving a range of 151.8 nmi range with a 313.9 second flight time. The terminal 

impact speed of the missile is Mach 2.6.  
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Fig. 39. Time history of sea skimming flight 

altitude. 

 

Fig. 40. Time history of sea skimming range. 

 

Fig. 41. Time history of sea skimming velocity. 

 

Fig. 42. Time history of sea skimming Mach 

number. 

 The sea skimming profile also used the mass flow and the launch weight mass fraction to determine when the 

rocket motor and the ramjet burnout occurred. Fig. 43 and Fig. 44 show the flight time histories of the overall weight, 

and the propellant mass flow. At the flight time 7.5 sec, the rocket motor burnouts out and the booster is dropped. The 

empty weight of the missile is 2669.28 lbf while the sea skimming profile ends at impact weight of 2683 lbf so the sea 

skimming profile is at the maximum range possible. During the sea skimming profile, the ambient density of the air 

is higher, resulting in a higher drag and trust requirement. For this reason, the sea skimming profile became the 

trajectory profile that had a larger impact on the sizing of the ramjet fuel tank. 
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Fig. 43. Time history of sea skimming overall 

weight. 

 

Fig. 44. Time history of sea skimming fuel mass 

flow. 

Fig. 45 shows the Thrust to weight and lift to drag ratios during the boost phase, and Fig. 46 shows the altitude verse 

range plot. The rail length requirement for the sea skimming profile follows the same method as the high-dive rail 

length. This argument is supported by Fig. 47, showing that missile continues to travel along a nearly constant flight 

path angle. For a sea skimming profile, the launch rail can be set to 29.5 ft with a launch azimuth of 12.5 degrees. Fig. 

47 shows the time history of the flight angle of attack, pitch angle and flight path angle. Fig. 48 shows aerodynamic 

and propulsive forces.  

 

Fig. 45. Sea skimming thrust to weight and lift to 

drag ratios during boost phase. 

 

Fig. 46. Sea skimming altitude vs range. 
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Fig. 47. Sea skimming time history of flight angle of 

attack, pitch angle, and flight path angle. 

 

Fig. 48. Sea skimming aerodynamic and propulsive 

forces. 

3. Varied Operating Conditions 

To be capable of operating at multiple test sites, ASDL-1776 was also tested against different launch altitudes. 

Fig. 49 shows the high diver trajectory for the sea level launch altitude, and Fig. 50 shows the trajectory for the 3,500 

ft launch altitude. With a lower ambient density, the booster is able to achieve Mach 2.08 at burnout; a small increase 

from the Mach 2.05 burnout during the launch at sea level.  

 

Fig. 49. High diver flight trajectory for sea level 

launch altitude. 

 

Fig. 50. High diver flight trajectory for 3500 ft 

launch altitude. 
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4. Trajectory Summary 

The goal of the trajectory analysis was to verify that the missile is capable of the flight profile requirements laid 

out by the RFP. For a target missile to be effective for training defense systems, the missile should be capable of flight 

profiles similar or better than available data for existing weapon systems. Table 24 shows how ASDL-1776 performs 

against the trajectory requirements. 

Table 24. Performance compared to Brahmos and trajectory requirements. 

Requirement Requirement BrahMos ASDL-1776 PROMISE 

High Dive Range 60 nmi - 
150 nmi 150 nmi 182+ nmi 

High Dive Cruise 
Speed Mach 2 – 4.5 Mach 3 Mach 3.25 

Terminal Dive Angle 10o-75o Steep-dive 74.5o 

High Dive Terminal 
Impact Speed Mach 0.9 - 3.5 ~ Mach 2.99 

Sea Skimming Range 60 nmi - 
150 nmi 150 nmi 151.8 nmi 

Sea Skimming Cruise 
Speed Mach 2 – 3.5 n/a Mach 2.75 

Sea Skimming Impact 
Speed Mach 2 - 3.5 ~ Mach 2.6 

Rail Length ~ ~ 29.5 ft 

Launch Azimuth 0o - 90o ~ High Dive: 45o 

Sea Skimming: 12.5o 

Launch Altitude 0-3500 ft  Capable of 0-3500 ft 
 

D. Cost and Operations 

The total cost of the ASDL-1776 PROMISE target missile system is based on the per unit costs and the launch 

system with all associated maintenance costs. At the weight of 5789 lbs. the first unit will have an estimate cost of 

$2,211,500 while the last unit in the production run will cost $902,020 due to the assumed learning curve, shown in 

Fig. 51. This gives an average cost per unit of $1,060,900 and a total cost of $387,230,000 2020 USD for the entire 

production run of 365 units. 
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Fig. 51. Production cost per unit. 

Operational costs were estimated using those of Standard Missile SM-6 due to its similar size, ability and low 

maintenance requirements [23]. Costs were scaled to the average per unit cost of each missile. The estimate assumed 

every missile in the production run was stored for the maximum 10 years to be an estimate of the maximum possible 

program cost. The 15 units used for developmental testing were not factored into the operational costs. All operational 

costs are enumerated in Table 25 below. 

Table 25. Operational costs. 

Cost Element Average Annual Cost Multiplier Total Cost Percent 

Unit Operations $3000 per unit 350 Missiles * 10 years $10,500,000 35.2% 

Maintenance $3200 per unit 350 Missiles * 10 years $11,200,000 37.6% 

Sustaining Support $2100 per unit 350 Missiles * 10 years $7,350,000 24.7% 

Indirect Support $200 per unit 350 Missiles * 10 years $700,000 2.4% 

Total Operational Costs ~ ~ $29,750,000 100% 
 
The total life cycle cost of the ASDL-1776 PROMISE is therefore estimated to be $416,950,000 including the 

production run and all associated operational costs making it significantly less expensive than missiles of similar 

capabilities. This is shown below in Table 26.
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Table 26. Total life cycle costs. 

Component Unit Cost (2020 USD) Total Cost (2020 USD) Percent 

PROMISE $1,060,900 $387,200,000 92.7% 

Operational Costs $85,000 $29,750,000 6.3% 

Total Cost $1,145,900 $416,950,000 100% 
 

XI. Conclusion 

The ASDL-1776 PROMISE missile provides a platform capable of high dive flight profiles with cruise speeds up 

to Mach 3.25 at 50,000 ft above sea level with a maximum range exceeding 180 nmi. It is also capable of sea skimming 

profiles with cruise speeds of Mach 2.75 at 195 ft above sea level with a maximum range of 150 nmi. This mission 

versatility makes the ASDL-1776 an ideal vehicle to be used for the development or training of defense systems 

against the expanding market of high kinetic energy aerial targets. Compared with the publicly available data, ASDL-

1776 was designed to exceed the Mach 3 cruise speed that BrahMos is capable of in the high-diver profile. A target 

missile should be less expensive than the systems that are air defenses are being trained against. BrahMos, the current 

leading cruise missile, has a reported unit cost of $2.73M [24]. The acquisition price of the ASDL-1776 is only 

$1.06M, which is less than 40% of the cost of a BrahMos missile. While being designed for same flight profiles as 

BrahMos, the ASDL-1776 PROMISE missile provides a target platform that is faster while being available at a 

significantly reduced cost compared to an operational weapon system. 

A. Specification Compliance 

Table 27 give the color chart that corresponds to Table 28, which shows the requirements laid out by the Request 

for Proposal alongside the capabilities that the ASDL-1776 PROMISE provides. This will provide the sections where 

the analysis is performed, along with showing whether or not the design satisfies each of the requirements. 
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Table 27. Compliance color chart 

Color Compliance 
 Met objective 

requirement 

 Met threshold 
requirement 

 Did not meet 
requirements 

 

Table 28. Specification Compliance 

Specific Requirements from 
RFP 

ASDL-1776 
PROMISE 

Performance 

Objective Met 
(Objective/Threshold/No) Analysis Location 

The target system shall be 
capable of achieving a 

threshold range of 60 nautical 
miles and an objective range of 

150 nmi at the end of the 
terminal phase. 

High Diver: 
182+ nmi 

Sea Skimming: 
152 nmi 

Yes 

High Diver: 
Section X.C.1 
Sea Skimming: 
Section X.C.2 

The target system shall be 
capable of operating between 

sea level and a maximum 
altitude of 65,000 feet. 

ASDL-1776 is capable 
of High Dive and Sea 

Skimming profiles 
Yes 

High Diver: 
Section X.C.1 
Sea Skimming: 
Section X.C.2 

The target system shall be 
capable of performing high 

altitude “high diver” and low 
altitude “nap of the earth” or 

“sea skimming” flight profiles 
employed by threat supersonic 

cruise missiles. 

ASDL-1776 is capable 
of High Dive and Sea 

Skimming profiles 
Yes 

High Diver: 
Section X.C.1 
Sea Skimming: 
Section X.C.2 

The target system shall be 
capable of cruising between 

5,000 and 65,000 feet while in 
"high diver" flight profile. 

50000 ft Yes Section X.C.1 

The target system shall be 
capable of cruising between 

Mach 2.0 and Mach 4.5 while 
in "high diver" flight profile. 

Mach 3.25 Yes Section X.C.1 

The target system shall be 
capable of performing a 

terminal diver between 10° and 
75° while in "high diver" flight 

profile. 

-74.5o Yes Section X.C.1 
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Specific Requirements from 
RFP 

ASDL-1776 
PROMISE 

Performance 

Objective Met 
(Objective/Threshold/No) Analysis Location 

The target system shall be 
capable of an impact speed 

between Mach 0.9 and Mach 
3.5 while in "high diver" flight 

profile. 

Mach 2.99 Yes Section X.C.1 

The target system shall be 
capable of cruising between 15 

and 200 ft above the surface 
while in "sea skimmer" flight 

profile. 

195 ft Yes Section X.C.2 

The target system shall be 
capable of cruising between 

Mach 2.0 and Mach 3.5 while 
in "sea skimmer" flight profile. 

Mach 2.6 Yes Section X.C.2 

The target system shall be 
capable of performing terminal 
high-g maneuvers during the 
final 20 nmi of the trajectory 
while in "sea skimmer" flight 

profile. 

15 g Lateral Turns 
7g Vertical Turns 

Maneuver Duration 
45s 

Yes Section X.B.2  

The target system shall be 
capable of an impact speed 

between Mach 2.0 and Mach 
3.6 while in "sea skimmer" 

flight profile. 

Mach 2.6 Yes Section X.C.2 

The target system shall be 
capable of maintaining course 

within ±1500 feet of the 
programmed trajectory. 

±1500 ft Yes Section VIII.F.6  

The target system shall be 
capable of achieving a 50-foot 
Circular Error Probable (CEP) 

at the end of the terminal 
phase. 

50 ft Yes Section VIII.F.6 

The target system shall be 
capable of safe storage, 

transportation, and handling 
for at least 10 years without 

maintenance. 

ASDL-1776 is capable 
of being stored for 10+ 

years without 
maintenance 

Yes Section VIII.H  
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Specific Requirements from 
RFP 

ASDL-1776 
PROMISE 

Performance 

Objective Met 
(Objective/Threshold/No) Analysis Location 

The target system shall be 
capable of launching from a 
launch rail at a fixed ground 

site between 0- and 3,500-feet 
altitude. 

Altitude: 0 ft – 3500 ft 
Elevation: 45° HD 
Elevation: 12.5° SS 

Yes Section X.C.3 

The target system shall be 
compatible with modular 

payloads. 

ASDL-1776 is capable 
of flying with a 

modular payload 
Yes Section X.B.1  
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