The World's Forum for Aerospace Leadership

  • Donate
  • Press Room
  • Renew
  • View Cart
The American Institute of Aeronautics and Astronautics (AIAA)

is the world's largest technical society dedicated to the global aerospace profession.

    • ARC
    • AIAA Foundation
    • Industry Guide
    Course Overview

    Atmospheric Flight Dynamics and Control


    The course covers all five aspects of flight dynamics and control in an integrated format – the equations of motion; aerodynamic modeling; steady-state analysis and control power; dynamic and modal analyses including modal approximations; and synthesis of stability-augmentation and autopilot control laws. The course contains a clear, rigorous, yet practical treatment of conventional topics dealing with rigid vehicles, while also extensively addressing the flight dynamics and control of elastic vehicles. Key topics include: the rigorous derivation of the equations of motion for rigid and flexible aircraft via Newton and Lagrange; a review/tutorial on lumped-mass vibrations including rigid-body degrees of freedom; modeling the effects of static and dynamic elastic deformation on the forces and moments; modal analysis of rigid and flexible vehicles; elastic effects on vehicle control (e.g., filtering, sensor and actuator placement); a case study on active structural mode control; plus other examples involving a flexible hypersonic vehicle and large flexible aircraft. The material on flexible vehicles is presented from a “flight-dynamics” rather than a “structural-dynamics” perspective.

    The dynamics-based synthesis of stability-augmentation control laws is strongly connected to the natural modes, and specifically addresses the multi-input/multi-output character of the dynamic system. An integrated treatment of linear dynamic models is used throughout, including transfer functions, state-variable models, and polynomial-matrix representations. Typical autopilot control laws are synthesized using loop-shaping techniques, including discussions of typical sensors and gain scheduling. Finally, the student is briefly introduced to the classical “crossover” pilot model and its implications regarding flight control. MATLAB® and Simulink are used extensively in the many examples involving real aircraft.

    Key Topics:

    • A clear, rigorous, yet practical treatment of conventional topics in flight dynamics – extensive aerodynamic modeling, static trim and stability, dynamic analysis; modal approximations and modal analysis using eigenvalues and eigenvectors.
    • Extensive coverage of more-advanced topics - development of the non-linear equations of motion in several important coordinate frames, plus the equations of motion for elastic vehicles; effects of variable mass or a rotating, spherical earth on the equations of motion.
    • Logical integration of all the facets of the subject using the overarching framework of non-linear systems analysis, including perturbation theory.
    • Dynamics-based synthesis of stability-augmentation control laws directly tied to the vehicle’s natural modes; consideration of the multi-input/multi-output effects present; sensor/actuator selection and gain scheduling; loop-shaping synthesis of typical autopilot modes; gain and phase stabilization and active control of elastic modes; an introduction to the “crossover” pilot model.
    • Extensive usage of MATLAB® and Simulink in the many examples involving real aircraft.

    Who Should Attend:

    The course is invaluable to anyone involved with the development of flight-dynamic models, or with their use, such as in control-law development or flight simulation. It is appropriate for the young engineer that wants a solid foundation in flight dynamics, aerodynamic modeling, and conventional, practical, flight-control-law synthesis, as well as the more established professional that wants both a review of the basic topics plus exposure to more advanced topics such as the flight dynamics of elastic vehicles. The rigorous yet practical treatment of the material will also be of interest to educators in aerospace or mechanical engineering.

    Course Information:

    Type of Course: Instructor-Led Short Course
    Course Level: Intermediate

    Course scheduling available in the following format:

    • Course at Conference
    • On-site Course
    • Standalone/Public Course

    Course Length: 2 days
    AIAA CEU's available: yes