Earth Observations from Space and Agricultural Water Management In California

Edwin Sheffner
Earth Science Division
Ames Research Center

2nd Annual California Aerospace Week
12 - 13 March 2013
State Capitol Building, Sacramento, CA.
Mapping Crop Water Requirements with Satellite Observations and CIMIS Data

Forrest Melton
forrest.s.melton@nasa.gov

Project Team:
Ecological Forecasting Lab
CSU Monterey Bay & NASA ARC-CREST, Moffett Field, CA

Partners:
California Department of Water Resources
Western Growers Association
USGS
Center for Irrigation Technology, CSU Fresno
USDA Agricultural Research Service / NRCS
Univ. of California, Cooperative Extension
Booth Ranches, Chiquita / Fresh Express Constellation Wines, Del Monte Produce
E. & J. Gallo, Farming D, Periera Farms
Ryan Palm Farms, Tanimura & Antle

Support provided by the NASA Applied Sciences Program, CSU Agricultural Research Initiative, CDFA
Challenges to Water Management in California

• Variability of precipitation
 – Seasonal
 – Inter-annual
 – Climate change

• Competing demands
 – Usage
 – Water quality
 – Environmental quality

• Groundwater overdraft

• Population growth

• Aging water conveyance infrastructure
California Agriculture*

- $43.5B in cash farm receipts in 2012 from 81,500 farms
- Major domestic/international supplier of specialty crops
- Half of US-grown fruits, nuts, vegetables
- Diversity of crops
 *Source: Calif. Dept. Food & Agriculture

Agriculture accounts for ~80% of the water used in the state. Increasing irrigation efficiency will provide greater flexibility for water management, lower costs of production and help assure a sustainable water supply.
California Irrigation Management Information System (CIMIS)

- Operated by CA DWR since 1982
- More than 139 ground stations currently providing daily measurements of Evapotranspiration ET₀
- **Spatial CIMIS** data now available for CA; 2km statewide grid, daily

Standard approach for incorporating weather information into irrigation management practices

\[
ET_c = ET_o \times K_c
\]
Growers who utilized weather and ET₀ data reported an increase in yields of 8% and a decrease in applied irrigation of 13% (DWR, 1997)

Objective: Apply satellite data to provide a new capability for mapping crop coefficients and crop water requirements to further enhance CIMIS capabilities for supporting growers

\[\text{ET}_{cb} = \text{ET}_0 * K_{cb} \]

CIMIS Satellite

Landsat (30m) MODIS (250m)
Satellite Irrigation Management Support (SIMS) Framework

Processing Steps

- At sensor radiance
- LEDAPS
- Surface reflect.
- NDVI
- Fractional cover
- \(K_{cb} \times E_T \)
- \(E_T^{cb} \)

Satellite (Landsat & MODIS)

Web browser

Mobile

Site info.

NASA Earth Exchange

Satellite Irrigation Management Support (SIMS) Framework
Approach (Why NASA?)

Approach integrates data from satellite and surface sensor networks. Project builds on past research by NASA, USDA ARS, CA Dept. of Water Resources that has shown:

- Consistent relationships between satellite indices, crop canopy conditions, and crop water requirements
- Approach shown to reduce applied water and increase yields: “win-win”

Approach integrates data from a constellation of satellites to map daily crop water requirements. Data distributed via web browser using web services architecture. Prototyping accelerated by NEX / NASA high end computing resources.
Mapping Crop Water Requirements with Satellite Observations and CIMIS Data

Forrest Melton
forrest.s.melton@nasa.gov

Project Team:
Ecological Forecasting Lab
CSU Monterey Bay & NASA ARC-CREST, Moffett Field, CA

Partners:
California Department of Water Resources
Western Growers Association
USGS
Center for Irrigation Technology, CSU Fresno
USDA Agricultural Research Service / NRCS
Univ. of California, Cooperative Extension
Booth Ranches, Chiquita / Fresh Express
Constellation Wines, Del Monte Produce
E. & J. Gallo, Farming D, Periera Farms
Ryan Palm Farms, Tanimura & Antle

Support provided by the NASA Applied Sciences Program, CSU Agricultural Research Initiative, CDFA
NASA Satellites Contributing Most to Water Cycle Studies
Thank you

forrest.s.melton@nasa.gov
edwin.j.sheffner@nasa.gov