ADVERTISING RATES & MEDIA INFORMATION

FEATURED INSIDE
➢ Digital and print advertising opportunities
➢ Reach various aerospace technology areas while accessing nearly 30,000 AIAA members

EFFECTIVE 1 JANUARY 2020
REACH AEROSPACE DECISION MAKERS WITH AIAA’S ADVERTISING OPTIONS

The American Institute of Aeronautics and Astronautics (AIAA) is the largest and most prestigious community of aerospace professionals in the world. AIAA exists to help aerospace professionals and their organizations succeed. AIAA’s vision is to be the voice of the aerospace profession through innovation, technical excellence, and global leadership.

We understand your company or organization needs access to leaders and decision makers in the aerospace community, and AIAA offers a selection of advertising opportunities to help you reach our members and the general aerospace community. We offer various digital media advertising selections such as banners or buttons on the AIAA.org site, buttons within the AIAA Daily Launch, and digital banners on the AerospaceAmerica.AIAA.org site. In addition, AIAA offers print advertising in Aerospace America, which is our flagship monthly magazine. Aerospace America reaches nearly 30,000 aerospace professionals and students in print and online—including every AIAA member, congressional offices on Capitol Hill, and hundreds of engineering and aerospace libraries.

I'm an avid reader of Aerospace America because it provides a balance of succinct highlights on what’s happening in aviation and space, but also offers deep dives into complex technical and policy issues. The magazine’s in-depth articles are often the best source for a synoptic treatment of matters I want to understand but don’t have time to research myself. Aerospace America provides refreshingly clear insights that are professionally relevant and up to date.

Ronald Hochstetler, Aviation Technology Specialist, Science Applications International Corporation (SAIC)
AIAA members are asked to identify primary technology areas that reflect their professional interest and work activities.

Aerospace Sciences 30%
- Aeroacoustics
- Applied Aerodynamics
- Astrodynamics
- Atmospheric and Space Environments
- Atmospheric Flight Mechanics
- Fluid Dynamics
- Guidance, Navigation & Control
- Aerodynamic Measurement Technology
- Plasmadynamics and Lasers
- Sounding Rockets
- Thermophysics
- Remote Sensing & Applications
- Thermodynamics
- Computational Fluid Dynamics
- Modeling & Simulation
- Ground Testing

Space and Missiles 18%
- Life Sciences and Systems
- Missile Systems
- Space Operations and Support
- Microgravity & Space Processes
- Space Systems
- Space Transportation
- Space Sciences & Astronomy
- Space Automation & Robotics
- Weapons System Effectiveness
- Human Factors Engineering
- Satellite Design, Integration & Test
- Launch Operations
- Laser Technology & Applications
- Space Tethers
- Space Colonization
- Space Tourism
- Terraforming
- Space Resources
- Space Architecture
- Space Logistics

Aircraft and Atmospheric Systems 15%
- Air Transportation Systems
- Aircraft Design
- Aircraft Operations
- Aircraft Safety
- Balloon Systems
- General Aviation
- Helicopter Design
- Lighter-Than-Air Systems
- Unmanned Systems
- V/STOL Aircraft Systems
- Marine Systems & Technology
- Hypersonic Systems
- Flight Testing
- Electronic Equipment Design
- Ground Support Equipment
- Aircraft Maintenance
- Reliability
- Test & Evaluation
- Standards Engineering
- Productivity & Cost Engineering
- Production Engineering
- Aerodynamic Decelerator Systems

Aerospace Design and Structures 11%
- Survivability
- Design Engineering
- Design Technology
- Materials
- Structural Dynamics
- Structures
- Adaptive Structures
- Radar Absorbing Materials & Structures
- Gossamer Spacecraft
- Non-Deterministic Approaches
- Multidisciplinary Design Optimization

Propulsion and Energy 12%
- Aerospace Power Systems
- Electric Propulsion
- Liquid Propulsion
- Propellants and Combustion
- Solid Rockets
- Terrestrial Energy Systems
- Nuclear and Future Flight Propulsion
- Hybrid Rockets
- Energetic Components & Systems
- Gas Turbine Engines
- High-Speed Air-Breathing Propulsion
- Air Breathing Propulsion Systems
- Integration

Information Systems 5%
- Aerospace Electronics
- Aerospace Maintenance
- Intelligent Systems
- Information and Command & Control Systems
- Communications Systems
- Computer Systems
- Digital Avionics Systems
- Sensor Systems
- Software Systems
- Support Systems
- System Effectiveness and Safety
- Micro-Nanotechnology

Engineering and Technology Management 9%
- Economics
- History
- Legal Aspects of Aeronautics & Astronautics
- Management
- Society and Aerospace Technology
- Technical Information Services
- Systems Engineering
- Environmental Assurance/Compliance
- Computer-Aided Enterprise Solutions

TECHNOLOGY SEGMENTS

- **30%** Aerospace Sciences
- **18%** Space & Missiles
- **15%** Aircraft & Atmospheric Systems
- **12%** Propulsion & Energy
- **11%** Aerospace Design & Structures
- **9%** Engineering and Technology Management
- **5%** Information Systems
Our readers are your company’s customers.

TOTAL CIRCULATION

30,000

GEOGRAPHIC DISTRIBUTION

89%

United States

11%

International

(80+ countries)

*combined print and digital

Here’s what they do:

JOB FUNCTION

- 36% Engineering
- 33% Educator/Research
- 16% Management
- 15% Other Personnel

INDUSTRY SEGMENTS

- 59% Services (Contracting/Education)
- 19% Manufacturing
- 17% Government
- 3% Suppliers
- 2% Transport
2020 EDITORIAL PLANNER

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>FEATURING*</th>
<th>BONUS DISTRIBUTION</th>
<th>CLOSING DATE**</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>Aircraft Design Tools</td>
<td>AIAA SciTech Forum, Orlando, FL, 6-10 January</td>
<td>10 December 2019</td>
</tr>
<tr>
<td></td>
<td>Artificial Intelligence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earth Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>Technology for Close Air Support</td>
<td></td>
<td>14 January 2020</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>Advanced Manufacturing</td>
<td>AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Montreal, Canada, 10-12 March</td>
<td>11 February 2020</td>
</tr>
<tr>
<td></td>
<td>Communications Satellites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>Cybersecurity</td>
<td>Space Symposium, Colorado Springs, CO, 30 March-2 April</td>
<td>9 March 2020</td>
</tr>
<tr>
<td></td>
<td>Military Space</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment and Aerospace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>Hypersonic Flight</td>
<td>AIAA DEFENSE Forum, Laurel, MD, 5-7 May</td>
<td>14 April 2020</td>
</tr>
<tr>
<td></td>
<td>Unmanned Aircraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical Takeoff and Landing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>Air Safety</td>
<td>AIAA AVIATION Forum, Reno, NV, 15-19 June</td>
<td>12 May 2020</td>
</tr>
<tr>
<td></td>
<td>Transformative Flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July/August</td>
<td>Civil Aviation</td>
<td>AIAA Propulsion and Energy Forum, New Orleans, LA, 24-26 August</td>
<td>11 June 2020</td>
</tr>
<tr>
<td></td>
<td>Electric Propulsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Aviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>Cybersecurity</td>
<td></td>
<td>11 August 2020</td>
</tr>
<tr>
<td></td>
<td>Hypersonics Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>Business Jet Technology</td>
<td></td>
<td>14 September 2020</td>
</tr>
<tr>
<td></td>
<td>Military Aviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>Materials</td>
<td>ASCEND, Las Vegas, NV, 16-18 November</td>
<td>13 October 2020</td>
</tr>
<tr>
<td></td>
<td>Space Entrepreneurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>Year-In-Review Issue</td>
<td></td>
<td>11 November 2020</td>
</tr>
</tbody>
</table>

*All content subject to change at editor's discretion.

**If you are placing a classified ad that needs layout and design, content is due seven days in advance of the camera-ready closing dates above.
How does one control such an aircraft? Keith Button spoke to Aerospace America about working on its hardware. The fans had to perform two functions: generate lift to maintain altitude and produce thrust to achieve forward motion. Vahana’s novel design also challenged the engineers to reinvent the actuator powering rotor pitch. Airbus, Vahana’s parent company, was working on its hardware. The fans had to perform two functions: generate lift to maintain altitude and produce thrust to achieve forward motion. Vahana’s novel design also challenged the engineers to reinvent the actuator powering rotor pitch.

This is the story of how one company, Airbus, working on its hardware. The fans had to perform two functions: generate lift to maintain altitude and produce thrust to achieve forward motion. Vahana’s novel design also challenged the engineers to reinvent the actuator powering rotor pitch.

Airbus is working on its hardware. The fans had to perform two functions: generate lift to maintain altitude and produce thrust to achieve forward motion. Vahana’s novel design also challenged the engineers to reinvent the actuator powering rotor pitch.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.

For reasons of economics, the aircraft probably wouldn’t have been able to lift off. Most helicopters and turbo-prop airplanes have combustion engines whose size and weight crimp the complexity of running eight sets of hydraulics. But hydraulically powered rotor pitch actuators would have been too big and too heavy. Electro-mechanical actuators, one for each fan, to control their blade pitch movement through a system of propulsion for the aircraft.

Airbus and from vertiports, the landing pads that planners whisk passengers safely over neighborhoods and to urban air mobility aircraft must do. They will need to execute complex maneuvers in a variety of wind conditions, where the company leases a hangar. The flights could clear the way for development of an operational commuter market. This design flexibility is exciting to engineers, who could clear the way for development of an operational commuter market.
SPECIFICATIONS AND DELIVERY

AD SPECIFICATIONS
PDF files are required. PDFx/1a preferred.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleed</td>
<td>8-3/8” x 11-1/8”</td>
</tr>
<tr>
<td>Trim size</td>
<td>8-1/8” x 10-7/8”</td>
</tr>
<tr>
<td>PDF document size</td>
<td>9-1/8” x 11-7/8”</td>
</tr>
<tr>
<td>Live area</td>
<td>7” x 10”</td>
</tr>
<tr>
<td>Number of columns</td>
<td>3</td>
</tr>
<tr>
<td>Column width</td>
<td>2-1/8”</td>
</tr>
<tr>
<td>Column height</td>
<td>10”</td>
</tr>
<tr>
<td>Binding</td>
<td>Perfect bound</td>
</tr>
<tr>
<td>Process</td>
<td>Heatset web offset</td>
</tr>
</tbody>
</table>

Vital advertising matters should be kept 1/4” from trim on all sides.

SIZE DIMENSIONS

- **Full**
 - Full page: 8-1/8” x 10-7/8”

- **2/3 Vert.**
 - 2/3 Vertical: 4-1/2” x 10”
 - Only available for Career Opportunity Advertising

- **1/2 Island**
 - 1/2 Island: 4-1/2” x 7”

- **1/6 Vert.**
 - 1/6 Vertical: 2-1/8” x 4-7/8”
 - 1/2 Horizontal: 7” x 4-7/8”

- **1/3 Vert.**
 - 1/3 Vertical: 2-1/8” x 10”
 - 1/3 Square: 4-1/2” x 4-7/8”

SHIPPING INFORMATION
Email all files, text, graphics, and photos to:
advertising@aiaa.org
COPY AND CONTRACT REGULATIONS

PUBLICATION FREQUENCY: Published 11 times a year, issued on the first of the month of the cover date of publication.

CLOSING DATE FOR INSERTION ORDERS: Due at publication advertising sales office by the 27th of the second month preceding issue cover date.

CLOSING DATE FOR MECHANICAL MATERIALS: All printing material due at publication by the first Friday of the month preceding issue cover date.

COMMUNICATION: Contracts, insertion orders, correspondence, request a quote, special requests, proofs and copy should be addressed to:
Email: advertising@aiaa.org

PUBLISHER’S COPY PROTECTIVE CLAUSE: Advertisers and advertising agencies assume sole liability for all content (including text, representations, photographs, and illustrations) of advertisement printed, and also assume responsibility for any claims arising therefrom made against the Publisher. The Publisher reserves the right to reject any advertising that does not conform to its publication standards, which are subject to change or modification at the sole discretion of the Publisher. Any advertising resembling editorial matter may be designated as advertising by the Publisher.

POSITIONING OF ADVERTISEMENTS: Advertisement placement is at the sole discretion of the Publisher except where a request for a specified preferred position is agreed to and acknowledged by the Publisher.

ADVERTISING POLICIES:
› Publisher has the right to hold advertiser and/or its advertising agency jointly and severally liable for such monies as are due and payable to Publisher for advertising which advertiser or its agent ordered and for which such advertising was published.
› Conditions other than rates are subject to change by Publisher without notice. As used in this section, entitled Advertising Policies, the term “Publisher” shall refer to Aerospace America Magazine and/or the American Institute of Aeronautics and Astronautics, Inc. (AIAA). The terms and conditions of this rate card supercede any terms or conditions appearing on advertiser’s orders or materials.
› Regulations concerning copy and contracts are those generally accepted throughout the industry.
› Advertisements are not accepted if they contain testimonial statements or endorsements given by a member or members of AIAA.
› No conditions other than those set forth in this rate card shall be binding on the Publisher unless specifically agreed to in writing by the Publisher.
› All orders are accepted for space subject to our credit requirements.
› Publisher retains right of final approval and acceptance of all advertising submitted, and shall not be liable for any loss resulting from rejection of such advertising.

AGENCY COMMISSION: 15% of gross billing allowed to recognized advertising agencies on display space, color and preferred position charges. Commission is not allowed on such charges as artwork, reprints, backup of inserts, classified ads under 1/6 page, production and bindery charges and special handling charges. Commission is subject to forfeiture on invoices not paid within 90 days from invoice date. All accounts not paid in full within 30 days of invoice date may incur a charge of 1.5% per month until paid in full.

DUAL LIABILITY: All advertising placed by an entity acting as the agent for another shall be regulated by the Law of Agency as defined in the Uniform Commercial Code. The entity for which any advertising is placed shall be held liable for payment in full for all advertising placed on its behalf regardless of whether such payment was remitted to the agent.
AIAA DAILY LAUNCH

AIAA’s daily news digest offers direct exposure to aerospace professionals and decision makers in the leading agencies and companies throughout the aerospace industry. One of the top AIAA member benefits, it is distributed to about 30,000 AIAA members each weekday morning.

FOR MORE INFORMATION CONTACT:
Kristin Torun, Director of Advertising Sales
Bulletin Media LLC
703.483.6158 | ktorun@bulletinmedia.com

AEROSPACE AMERICA ONLINE

› Reach over 11,500 monthly users

2020 ONLINE ADVERTISING RATES

<table>
<thead>
<tr>
<th>30 Days</th>
<th>Top Banner</th>
<th>Bottom Banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusive</td>
<td>$1,500</td>
<td>$900</td>
</tr>
</tbody>
</table>

aerospaceamerica.aiaa.org

PRODUCTION SPECIFICATIONS

<table>
<thead>
<tr>
<th>Maximum file size</th>
<th>50kb</th>
</tr>
</thead>
<tbody>
<tr>
<td>File format</td>
<td>GIF or JPEG</td>
</tr>
<tr>
<td></td>
<td>Animated GIF files accepted</td>
</tr>
<tr>
<td>Flash files</td>
<td>Not Accepted</td>
</tr>
</tbody>
</table>

SIZES

<table>
<thead>
<tr>
<th>AA Banner</th>
<th>Standard</th>
<th>1200px x 200px</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA Banner</td>
<td>Mobile</td>
<td>750px x 750px</td>
</tr>
</tbody>
</table>

Camera-ready artwork for both ad sizes are required by ad closing deadline, typically 15th of month prior to run date. AIAA does not guarantee impressions or track click throughs.

SHIPPING INFORMATION

Email all files, text, graphics, and photos to: advertising@aiaa.org

CUSTOM ADVERTISING PACKAGE

By bundling print and/or online advertising with AIAA and Aerospace America, your company can get more for your investment! Contact advertising@aiaa.org to request a custom advertising package today.

AA BANNER

AEROSPACE AMERICA ONLINE & AIAA DAILY LAUNCH
Advertising on AIAA’s website, aiaa.org, gives your company immediate and daily exposure to the decision makers in the leading agencies and companies throughout the aerospace industry.

- Over 35,000 users per month
- Over 4,000 page views per day
- Over 125,000 page views per month

All prices are based on a fixed 30-day exposure on the home page. Ads are available either as a skyscraper or a button and advertising can be purchased as exclusive or rotating with either one or two other messages. **AIAA does not guarantee number of impressions or click throughs.** Availability is limited.

2020 ONLINE ADVERTISING RATES

<table>
<thead>
<tr>
<th>30 Days</th>
<th>Banner</th>
<th>Rectangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusive</td>
<td>$3,500</td>
<td>$2,000</td>
</tr>
<tr>
<td>Rotates w/ 1 other Advertiser</td>
<td>$2,500</td>
<td>$1,200</td>
</tr>
<tr>
<td>Rotates w/ 2 other Advertisers</td>
<td>$1,800</td>
<td>$950</td>
</tr>
</tbody>
</table>

PRODUCTION SPECIFICATIONS

- Maximum file size: 50kb
- File format: GIF or JPEG
- Animated GIF files accepted
- Flash files: Not Accepted

Note: Ads are responsive on mobile devices and retain banner dimensions.

SIZES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner</td>
<td>970px x 250px</td>
</tr>
<tr>
<td>Rectangle</td>
<td>300px x 250px</td>
</tr>
</tbody>
</table>

SHIPPING INFORMATION

Email all files, text, graphics, and photos to: advertising@aiaa.org

SUBPAGE RECTANGLE AD OPPORTUNITIES

Top subpages of AIAA average more than 5,000 page views per month.

- Membership (landing page)
 - Over 6,500 page views per month
- Publications (landing page)
 - Over 5,500 page views per month
- Events & Learning (landing page)
 - Over 4,500 page views per month
As the world’s resource for aerospace technical information, Aerospace Research Central (ARC) will give you daily exposure to thousands of individuals in the aerospace industry.

- Over 8,000 visits per day
- Over 200,000 visits per month (51% are new visitors)
- Over 600,000 page views per month

All prices are based on a fixed, 30-day exposure on the home page. Ads are available either as a banner or skyscraper. All ads are exclusive and will not rotate with other advertisers for the duration of the exposure. AIAA does not guarantee number of impressions or click throughs.

2020 ONLINE ADVERTISING RATES

<table>
<thead>
<tr>
<th>Duration</th>
<th>Banner</th>
<th>Rectangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusive ONLY</td>
<td>$3,200</td>
<td>$2,800</td>
</tr>
</tbody>
</table>

PRODUCTION SPECIFICATIONS

- Maximum file size: 150 kb
- File Format: GIF or JPEG
- Animated GIF files accepted
- Flash Files: Not Accepted

SIZES

- Banner: 970px x 125px
- Rectangle: 300px x 250px

SHIPPING INFORMATION

Email all files, text, graphics, and photos to: advertising@aiaa.org

AIAA will provide ad stats to client after the advertisement has ended.
Meet our Editor-in-Chief, Ben Iannotta
Ben Iannotta has 25 years of experience as a writer and editor in the aerospace and technology industries. He began in 1989 at The Washington Post; Space News hired him in 1993 to cover military and civil space programs. In 1996, he started working as a freelance journalist covering technology, environmental and military news. From 2008 to 2012, he was editor of the C4ISR Journal. He left to establish DeepDiveIntel.com, a technology-focused digital news service for intelligence professionals. Iannotta’s work has been published by Aerospace America; Air and Space Smithsonian; New Scientist; Popular Mechanics; and Reuters News Service.