WHAT ARE UAS

An unmanned aircraft system (UAS), commonly referred to as a drone, is a remotely or autonomously-controlled aircraft without a human pilot on board. Design and development leading toward the deployment of remotely piloted or unmanned aircraft began with the first autopilot function developed by Elmer Sperry in 1912. This advancement was a precursor to the automation, robotics, and machine learning commonplace in aerospace manufacturing and operations today. One hundred years later, in 2012, the FAA Modernization and Reform Act served as a catalyst to advance technologies and accelerate commercial use of UAS, a sector that was initially primarily focused on military applications. The FAA Reauthorization Act of 2018 furthers regulation of unmanned aircraft operations.

REALIZED BENEFITS

With the surge in new applications, the commercial UAS sector is poised to be one of the most dynamic growth sectors of the global aerospace industry. The Association for Unmanned Vehicle Systems International predicts that by 2025, UAS integration in the United States could create more than 100,000 jobs with an economic benefit of $82 billion.

CHALLENGES AND THREATS

UAS represent not only a technology disruptor, but a major change in the cost and method of entry into the national air space. Ensuring their safe and secure integration is of utmost concern. Maintaining cybersecurity and the security of downlinks and command and control operations are essential. There are also privacy concerns regarding the use of UAS to collect data that will need to be addressed through legislation at all levels of government. The FAA and NASA are collaborating on a proposed unmanned traffic management (UTM) system based on digital sharing of each user’s planned flight details, and on proposed requirements for safe, resilient automation. These advancements will require significant, stable, and consistent funding and infrastructure investment to implement safely and to address additional technologically challenging issues that may arise.

The transformative technologies being developed and utilized in UAS are not platform dependent. New sensors, data analysis systems, and software being developed for UAS applications will inform and enhance performance and safety in manned aircraft. As UAS increasingly become nodes in the Internet of Things, creating useful policies and procedures around how this data is collected, transmitted, and secured will require all stakeholders to look beyond the immediate use case and well into the future.

NEXT STEPS

Currently, the FAA has rules in place for small UAS (less than 55 pounds) used for a broad spectrum of commercial and government applications. The Department of Transportation is also presently collaborating with 10 municipalities across the country on unmanned operations that include package drop-offs and flights outside the aircraft operator’s line of sight and over human beings. These efforts, along with language in the recently passed FAA Reauthorization Act of 2018, lay the groundwork for more to be done.

Industry stakeholders, regulatory agencies, and federal, state, and local officials must work together to help realize the economic and technological benefits of unmanned vehicles. The R&D needed to solve technical challenges that arise should be considered an inherently governmental responsibility to solve, just as past aeronautics research has enabled the vast aerospace infrastructure we enjoy today. The continued development and implementation of a UTM system and safe automation, coupled with proper certification and operational rulemaking, will ensure the safe and secure integration of unmanned, highly autonomous systems into the national air space.