Fundamentals of Space Vehicle Guidance, Control, and Astrodynamics

In This Section

SpaceVehicleGuidanceCourseRocketInstructed by Bong Wie, Professor of Aerospace Engineering at Iowa State University 


This course presents a coherent treatment of the fundamental principles in guidance, control, and astrodynamics of space vehicles. It is intended for guidance, navigation & control (GNC) engineers and researchers, spacecraft systems engineers, space mission designers, technical managers, and/or graduate students, who are interested in a comprehensive introduction to the GNC and astrodynamical problems of spacecraft, launch vehicles, and robotic/human exploration of the moon, Mars, and asteroids. This course is based on the instructor’s second AIAA textbook Space Vehicle Guidance, Control, and Astrodynamics (2015),” with additional new materials on emerging GNC and astrodynamical topics.  (Textbook is optional reading, not required for course.)

What You Will Learn

  • Review the basic physical concepts and mathematical tools required for the analysis, design, and simulation of GNC subsystem or attitude and orbit control subsystem (AOCS) of space vehicles
  • Study  the fundamentals of classical orbital dynamics and modern computational astrodynamics
  • Explore the relationships and interface of three distinct, yet closely related, technical areas of guidance, control, and astrodynamics
  • Study various GNC/AOCS technologies required for the successful development of advanced space systems, launch vehicles, and complex space missions
  • Learn the fundamental principles of strapdown inertial navigation and guidance
  • Learn the basic physical principles of orbital intercept, rendezvous, and terminal impact guidance
  • Explore robotic/human Mars entry, descent, and landing (EDL) guidance technologies

Key Course Topics

  • Spacecraft Rotational Kinematics, Dynamics, and Control
  • Launch Vehicle Ascent Guidance and Flight Control 
  • Inertial Navigation and Guidance; Strapdown Inertial Navigation
  • PN (Proportional Navigation) Guidance and Its Variants
  • ZEM/ZEV (Zero-Effort-Miss/Zero-Effort-Velocity) Feedback Guidance and Its Variants
  • Orbital Intercept, Rendezvous, and Terminal Impact Guidance
  • Kepler’s Problem; Lambert’s Problem; Angles-Only Initial Orbit Determination (IOD) Problem
  • Circular and Elliptical Clohessy-Wiltshir-Hill (CWH) Relative Equations of Motion
  • Restricted Three-Body Problem; Lagrangian Points; Halo Orbit 
  • Close-Proximity Operation of Spacecraft around  an Irregular-Shaped Asteroid
  • Robotic/Human Mars Entry, Descent, and Landing (EDL) Guidance Technologies

Who Should Attend

This course is intended for GNC/AOCS engineers and researchers, spacecraft systems engineers, graduate students, and/or technical managers, who want to enhance their understanding of the fundamental principles of space vehicle guidance, control, and astrodynamics. This introductory course focuses on the basic physical concepts and mathematical tools required for GNC/AOCS design, analysis, and simulation. (An advanced version of this course, which exploits computational optimization software tools, is to be offered in Fall 2020.)


BongWieBong Wie is Professor of Aerospace Engineering at Iowa State University. He holds a B.S. in aerospace engineering from Seoul National University and a M.S. and Ph.D. in aeronautics and astronautics from Stanford University. In 2006 he received AIAA’s Mechanics and Control of Flight Award for his innovative research on advanced control of complex spacecraft such as solar sails, large flexible structures, and agile imaging satellites equipped with control moment gyros. He is the author of two AIAA textbooks: “Space Vehicle Dynamics and Control (1998)” and “Space Vehicle Guidance, Control, and Astrodynamics(2015).” He has published 200 technical papers and 80 journal articles, and his Google Scholar h-index is 39. He has three US patents on singularity-avoidance steering logic of control moment gyros. During the past 10 years, he has been actively involved in guidance, control, and astrodynamics research for deflecting or disrupting hazardous near-Earth objects (NEO). From 2011-2014, he was a NIAC (NASA Advanced Innovative Concepts) Fellow for developing an innovative solution to NASA’s NEO impact threat mitigation grand challenge and its flight validation mission design. His NIAC study effort has resulted in two distinct concepts for effectively disrupting  hazardous asteroids with short warning time, called a hypervelocity asteroid intercept vehicle (HAIV) and a multiple kinetic-energy impactor vehicle (MKIV). His current research focuses on developing   robust multi-phase ZEM/ZEV feedback guidance strategies for robotic/human Mars precision powered descent & landing with hazard avoidance and retargeting.  He is also currently involved in missile guidance research for developing new practical solutions to the impact time and angle guidance (ITAG) problem of missiles. He is co-Editor of Astrodynamics, an international journal newly established in 2018.